Malformations Caused by Shuni Virus in Ruminants, Israel, 2014–2015
نویسندگان
چکیده
To the Editor: Viruses in the Simbu serogroup are arboviruses that cause abortion, stillbirth, and congenital abnormalities in domestic ruminants. Akabane virus (AKAV), Aino virus (AINV), and Schmallenberg virus are the most studied in this serogroup; Shuni, Sabo, Shamonda, and Sango viruses (1,2) are examined less frequently. Until 2012, only AKAV had been associated with congenital abnormalities in Israel, although AINV had been identified serologically in dairy cow herds with no clinical signs in 2003 (3). Moreover, of 15 brain samples collected during February–October 2012 from adult cows with central nervous system manifestations, 6 were positive for AKAV by PCR. In late December 2014, the Israeli Veterinary Field Services was notified of the appearance of arthrogryposishydranencephaly syndrome (1) in 2 herds of sheep in the villages of Yokneam and Sde Ya’akov, respectively; both villages are located in the Izre’el Valley, in Israel’s northern valleys (online Technical Appendix Figure 1, http:// wwwnc.cdc.gov/EID/article/21/12/15-0804-Techapp.pdf), where several arboviral infections have occurred in recent decades. From our past experience (3), ≥1 virus of the Simbu serogroup was suspected to have infected the ruminants, probably during August–October 2014. We collected 27 samples of brain, placenta, spleen, lung, and blood (mixed with EDTA to prevent coagulation) from 15 sheep, goats, and cattle. Most samples were from the 2 affected flocks in the northern valley; a few were from ruminants in additional locations: Avadon, near Israel’s border with Lebanon; Ein Hachoresh, near central Israel; and Hura, close to the Negev desert (online Technical Appendix Figure 1). Of the 27 samples, 23 (85%) were positive for Shuni virus (SHUV) by PCR (Table). SHUV, which had not been reported in Israel, was isolated from the brain and placenta of 1 malformed lamb (strain 2504/3/14; sample 11 in the Table). Moreover, partial nucleotide sequences of the small, medium, and large DNA segments (580/850, 4,320/4,326, and 285/6,880 bp, respectively) were identified from 3 samples (strains Yokneam 2417/2/14 and 2504/3/14 and Hura 273/14 from samples 2, 11, and 9, respectively, in the Table; online Technical Appendix Figure 2). Sequence data obtained by conventional PCR in this study have been deposited into GenBank (accession nos. KP900863–5, KP900873–5, KP900879–80, and KP900884). Phylogenetic analysis of the samples showed that they were isolates of SHUV (online Technical Appendix Figure 2). Additional SHUV RNA-specific fragments were detected in pathologic samples from kids, lambs, and calves (Table). Full-genome sequences were not performed, although sequencing should be done when possible to determine precise origin of isolates. For further testing, we inoculated homogenate material from 7 distinct malformations (samples 1, 2, 6, 8, 11, 12, and 15 in the Table) into baby mice; only 1 family of baby mice inoculated intracerebrally with the SHUV isolate (sample 11 in the Table) exhibited characteristic neurologic signs of nervousness. PCR confirmed that SHUV caused the cerebral infections in these mice. The isolate was also suitable for further propagation in the Vero cell line (Table). Our results showed the presence of SHUV in sheep in Israel during the winter of 2014–15 and suggest a northward expansion of SHUV from sub-Saharan Africa. Although SHUV was first isolated in the 1960s (2), its role as a pathogen has been shown only recently in its involvement in encephalitis in horses (4). We isolated SHUV from the pathologic fetal brain of a malformed lamb, an unusual laboratory finding because, although Simbu viruses are readily isolable from vectors or exposed animals during the 3 or 4 days of viremia, they are seldom isolable from pathologic specimens collected for study of congenital malformations. We deduce from the clinical evidence that malformations appear up to 6 months after infection with SHUV and after the virus has been eliminated from the host after immune
منابع مشابه
A sensitive nested real-time RT-PCR for the detection of Shuni virus.
Recently Shuni virus (SHUV) has been identified in clinical cases of neurological disease in horses in South Africa. Being that it was one of the less recognized orthobunyaviruses, with limited clinical descriptions of disease dating back to the 1960s and 1970s, SHUV-specific assays were never developed. In this study, the development of a nested real-time PCR assay is described for the detecti...
متن کاملA freedom from disease study: Schmallenberg virus in the south of England in 2015
In 2011-2012, northern European livestock faced a threat from a newly emerged virus, Schmallenberg virus (SBV), only a few years after a major outbreak of bluetongue serotype 8 (BTV-8). Like BTV-8, SBV is transmitted by Culicoides biting midges to ruminants and spread throughout Europe. SBV, however, spread faster, reaching the UK within three months of initial discovery. Adult ruminants show o...
متن کاملSeroprevalence and Risk factors of Akabane Virus Infection in cattle from Khouzestan Province of Iran
Background and Aims: Akabane virus is an arbovirus in the genus Orthobunyavirus of the family Bunyaviridae that can affect ruminants such as cattle, sheep and goats. This arthropod-borne virus is transmitted by either mosquitoes or midges and has been identified as a cause of outbreaks of reproductive disorders (abortions, premature births, and stillbirths) and congenital malformations (arthrog...
متن کاملCongenital Malformations of Calves Infected with Shamonda Virus, Southern Japan
In 2015 and 2016, we observed 15 malformed calves that were exposed to intrauterine infection with Shamonda virus, a Simbu serogroup orthobunyavirus, in Japan. Characteristic manifestations were arthrogryposis and gross lesions in the central nervous system. Our results indicate that this arbovirus should be considered a teratogenic virus in ruminants.
متن کاملPersistence of Lineage IV Peste-des-petits ruminants virus within Israel since 1993: An evolutionary perspective
Peste-des-petits ruminants (PPR) is one of the most important infectious diseases of domesticated small ruminants. From the initial identification in 1942 in West Africa, PPR virus (PPRV) has spread throughout much of the developing world. PPRV is now considered endemic throughout Africa, with the notable exception of South Africa, the Middle-East and Israel, as well as South-, East-, and Centr...
متن کامل