Differential Kv1.3, KCa3.1, and Kir2.1 expression in “classically” and “alternatively” activated microglia

نویسندگان

  • Hai M. Nguyen
  • Eva M. Grössinger
  • Makoto Horiuchi
  • Kyle W. Davis
  • Lee‐Way Jin
  • Izumi Maezawa
  • Heike Wulff
چکیده

Microglia are highly plastic cells that can assume different phenotypes in response to microenvironmental signals. Lipopolysaccharide (LPS) and interferon-γ (IFN-γ) promote differentiation into classically activated M1-like microglia, which produce high levels of pro-inflammatory cytokines and nitric oxide and are thought to contribute to neurological damage in ischemic stroke and Alzheimer's disease. IL-4 in contrast induces a phenotype associated with anti-inflammatory effects and tissue repair. We here investigated whether these microglia subsets vary in their K+ channel expression by differentiating neonatal mouse microglia into M(LPS) and M(IL-4) microglia and studying their K+ channel expression by whole-cell patch-clamp, quantitative PCR and immunohistochemistry. We identified three major types of K+ channels based on their biophysical and pharmacological fingerprints: a use-dependent, outwardly rectifying current sensitive to the KV 1.3 blockers PAP-1 and ShK-186, an inwardly rectifying Ba2+ -sensitive Kir 2.1 current, and a Ca2+ -activated, TRAM-34-sensitive KCa 3.1 current. Both KV 1.3 and KCa 3.1 blockers inhibited pro-inflammatory cytokine production and iNOS and COX2 expression demonstrating that KV 1.3 and KCa 3.1 play important roles in microglia activation. Following differentiation with LPS or a combination of LPS and IFN-γ microglia exhibited high KV 1.3 current densities (∼50 pA/pF at 40 mV) and virtually no KCa 3.1 and Kir currents, while microglia differentiated with IL-4 exhibited large Kir 2.1 currents (∼ 10 pA/pF at -120 mV). KCa 3.1 currents were generally low but moderately increased following stimulation with IFN-γ or ATP (∼10 pS/pF). This differential K+ channel expression pattern suggests that KV 1.3 and KCa 3.1 inhibitors could be used to inhibit detrimental neuroinflammatory microglia functions. GLIA 2016;65:106-121.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potassium channels Kv1.3 and KCa3.1 cooperatively and compensatorily regulate antigen-specific memory T cell functions

Voltage-gated Kv1.3 and Ca2+-dependent KCa3.1 are the most prevalent K+ channels expressed by human and rat T cells. Despite the preferential upregulation of Kv1.3 over KCa3.1 on autoantigen-experienced effector memory T cells, whether Kv1.3 is required for their induction and function is unclear. Here we show, using Kv1.3-deficient rats, that Kv1.3 is involved in the development of chronically...

متن کامل

Differentially Expressed Potassium Channels Are Associated with Function of Human Effector Memory CD8+ T Cells

The voltage-gated potassium channel, Kv1.3, and the Ca2+-activated potassium channel, KCa3.1, regulate membrane potentials in T cells, thereby controlling T cell activation and cytokine production. However, little is known about the expression and function of potassium channels in human effector memory (EM) CD8+ T cells that can be further divided into functionally distinct subsets based on the...

متن کامل

A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation.

The proliferation of microglia is a normal process in CNS development and in the defense against pathological insults, although, paradoxically, it contributes to several brain diseases. We have examined the types of voltage-activated K(+) currents (Kv) and their roles in microglial proliferation. Microglia were tissue-printed directly from the hippocampal region using brain slices from 5- to 14...

متن کامل

IL-4 type 1 receptor signaling up-regulates KCNN4 expression, and increases the KCa3.1 current and its contribution to migration of alternative-activated microglia

The Ca(2+)-activated K(+) channel, KCa3.1 (KCNN4/IK1/SK4), contributes to "classical," pro-inflammatory activation of microglia, and KCa3.1 blockers have improved the outcome in several rodent models of CNS damage. For instance, blocking KCa3.1 with TRAM-34 rescued retinal ganglion neurons after optic nerve damage in vivo and, reduced p38 MAP kinase activation, production of reactive oxygen and...

متن کامل

P2Y12 expression and function in alternatively activated human microglia

OBJECTIVE To investigate and measure the functional significance of altered P2Y12 expression in the context of human microglia activation. METHODS We performed in vitro and in situ experiments to measure how P2Y12 expression can influence disease-relevant functional properties of classically activated (M1) and alternatively activated (M2) human microglia in the inflamed brain. RESULTS We de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2017