LNCS 3889 - Model Structure Selection in Convolutive Mixtures
نویسندگان
چکیده
The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help answer questions like: ’Are we actually dealing with a convolutive mixture?’. We try to answer this question for EEG data.
منابع مشابه
Model Structure Selection in Convolutive Mixtures
The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimoneous representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help...
متن کاملAn automatic method for separation and identification of Biomedical Signals from Convolutive Mixtures by Independent Component Analysis in the Frequency Domain
In this study we propose an automatic method for solving convolutive mixtures separation. The independent components are extracted by frequency domain analysis, where the convolutive model can be solved by instantaneous mixing model approach. The signals are reconstructed back in the observation space resolving the ICA model ambiguities. Simulations are carried out to test the validity of the p...
متن کاملConvolutive independent component analysis by leave-one-out optimal kernel approximation
This work addresses on blind separation of convolutive mixtures of independent sources. The temporally convolutive structure is assumed to be composed of multiple mixing matrices, each corresponding to a time delay, collectively transforming a segment of consecutive source signals to form multichannel observations. As τ = 1, this problem reduces to linear independent component analysis. For arb...
متن کاملEstimating Ar Parameter-sets for Linear-recurrent Signals in Convolutive Mixtures
This article investigates a theoretical basis for estimating autoregressive (AR) processes for linear-recurrent signals in convolutive mixtures. Whitening of such signals is sometimes a problem in multichannel blind equalization which is intended to extract the original signals even if the signals are of a convolutive mixture type. This whitening is due to inverse-filtering which deconvolves th...
متن کاملA probabilistic approach for blind source separation of underdetermined convolutive mixtures
There are very few techniques that can separate signals from the convolutive mixture in the underdetermined case. We have developed a method that uses overcomplete expansion of the signal created with a time-frequency transform and that also uses the property of sparseness and a Laplacian source density model to obtain the source signals from the instantaneously mixed signals in the underderdet...
متن کامل