Early Root Herbivory Impairs Arbuscular Mycorrhizal Fungal Colonization and Shifts Defence Allocation in Establishing Plantago lanceolata
نویسندگان
چکیده
Research into plant-mediated indirect interactions between arbuscular mycorrhizal (AM) fungi and insect herbivores has focussed on those between plant shoots and above-ground herbivores, despite the fact that only below-ground herbivores share the same part of the host plant as AM fungi. Using Plantago lanceolata L., we aimed to characterise how early root herbivory by the vine weevil (Otiorhynchus sulcatus F.) affected subsequent colonization by AM fungi (Glomus spp.) and determine how the two affected plant growth and defensive chemistry. We exposed four week old P. lanceolata to root herbivory and AM fungi using a 2×2 factorial design (and quantified subsequent effects on plant biomass and iridoid glycosides (IGs) concentrations. Otiorhynchus sulcatus reduced root growth by c. 64%, whereas plant growth was unaffected by AM fungi. Root herbivory reduced extent of AM fungal colonization (by c. 61%). O. sulcatus did not influence overall IG concentrations, but caused qualitative shifts in root and shoot IGs, specifically increasing the proportion of the more toxic catalpol. These changes may reflect defensive allocation in the plant against further attack. This study demonstrates that very early root herbivory during plant development can shape future patterns of AM fungal colonization and influence defensive allocation in the plant.
منابع مشابه
Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L.
The role of indigenous and non-indigenous arbuscular mycorrhizal fungi (AMF) on As uptake by Plantago lanceolata L. growing on substrate originating from mine waste rich in As was assessed in a pot experiment. P. lanceolata inoculated with AMF had higher shoot and root biomass and lower concentrations of As in roots than the non-inoculated plants. There were significant differences in As concen...
متن کاملImpact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner.
The growth response of the hyphae of mycorrhizal fungi has been determined, both when plant and fungus together and when only the fungus was exposed to a temperature change. Two host plant species, Plantago lanceolata and Holcus lanatus, were grown separately in pots inoculated with the mycorrhizal fungus Glomus mosseae at 20/18 degrees C (day/night); half of the pots were then transferred to 1...
متن کاملEnzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress.
The objectives of the present field study were to examine the soil enzyme activities in the soil root zones of Plantago lanceolata and Plantago major in different heavy metal contaminated stands. Moreover, the investigations concerned the intensity of root endophytic colonization and metal bioaccumulation in roots and shoots. The investigated Plantago species exhibited an excluder strategy, acc...
متن کاملDrought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi.
The halophytes Plantago maritima, Aster tripolium, Artemisia santonicum, Puccinellia limosa, Festuca pseudovina and Lepidium crassifolium from two different saline soils of the Hungarian steppe were examined for colonization by arbuscular mycorrhizal fungi (AMF). The salt aster (A. tripolium) and the sea plantain (P. maritima) were examined more thoroughly by recording root colonization paramet...
متن کاملFungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi.
We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1omega5 was used as a signature f...
متن کامل