Retinoic acid and polyriboinosinic:polyribocytidylic acid stimulate robust anti-tetanus antibody production while differentially regulating type 1/type 2 cytokines and lymphocyte populations.
نویسندگان
چکیده
Retinoic acid (RA), a bioactive retinoid, and polyriboinosinic:polyribocytidylic acid (PIC) are known to promote immunity in vitamin A-deficient animals. In this study, we hypothesized that RA, PIC, and the combination can provide significant immunoadjuvant activity even in the vitamin A-adequate state. Six-week-old C57BL/6 mice were immunized with tetanus toxoid (TT) and treated with RA and/or PIC at priming in three independent studies of short and long duration. RA and PIC differentially regulated both primary and secondary anti-TT IgG isotypes, whereas the combination of RA + PIC stimulated the highest level of anti-TT IgG production and, concomitantly, a ratio of IgG1 to IgG2a similar to that of the control group. The regulation of Ab response was strongly associated with type 1/type 2 cytokine gene expression. Whereas RA reduced type 1 cytokines (IFN-gamma and IL-12), PIC enhanced both type 1 and type 2 cytokines (IL-4 and IL-12) and cytokine-related transcription factors. Despite the presence of PIC, the IL-4:IFN-gamma ratio was significantly elevated by RA. In addition, RA and/or PIC modulated NK/NKT cell populations and the level of expression of the costimulatory molecules CD80/CD86, evident 3 days after priming. Notably, the NKT:NK and CD80:CD86 ratios were correlated with the IL-4:IFN-gamma ratio, indicative of multiple converging modes of regulation. Overall, RA, PIC, and RA + PIC rapidly and differentially shaped the anti-tetanus Ig response. The robust, durable, and proportionate increase in all anti-TT IgG isotypes induced by RA + PIC suggests that this combination is promising as a means to enhance the Ab response to TT and similar vaccines.
منابع مشابه
The anti-tetanus immune response of neonatal mice is augmented by retinoic acid combined with polyriboinosinic:polyribocytidylic acid.
Neonates are highly susceptible to infectious diseases and, in general, respond poorly to conventional vaccines due to immaturity of the immune system. In the present study, we hypothesized that the anti-tetanus toxoid (TT) vaccine response of neonatal mice could be enhanced by retinoic acid (RA), a bioactive retinoid, and polyriboinosinic:polyribocytidylic acid (PIC), an inducer of IFN. Early-...
متن کاملدرمان موشهای دیابتیک نوع 1 با آل- ترانس رتینوئیک اسید از طریق مهار سایتوکاینهای پیش التهابی
Background & Aims: Type 1 diabetes is an autoimmune condition associated with the T-cell–mediated destruction of Pancreatic β cells. Vitamin A (retinol) and its metabolites (such as all-trans retinoic acid (ATRA)) have a variety of biological activities including immunomodulatory action in a number of inflammatory and autoimmune conditions. The purpose of this study was to investigate the e...
متن کاملSurvival of activated human T lymphocytes is promoted by retinoic acid via induction of IL-2.
At the end of an immune response, most activated T cells spontaneously undergo programmed cell death (apoptosis). In the present study we show that all-trans retinoic acid (atRA), a major vitamin A metabolite, can inhibit the spontaneous apoptosis of activated human T lymphocytes in vitro. Isolated peripheral blood T lymphocytes were activated by 12-O-tetradecanoyl phorbol 13-acetate and cultur...
متن کاملاثرایمونوتراپیوتیک آل- ترانس رتینوئیک اسید بر دیابت تیپ 1 در موش و تاثیر آن بر بیان ژن (peroxisome proliferator- activated receptor gamma (PPARγ
Background: All-trans retinoic acid (ATRA) has a variety of biological activities, including immunomodulatory action in a number of inflammatory and autoimmune diseases. The purpose of this study was to investigate the effects of all-trans retinoic acid on the treatment of autoimmune diabetes in mice and its effects on expressions of Peroxisome Proliferator-Activated Receptor gamma (PPARγ...
متن کاملChanges in some pro-and anti-inflammatory cytokines produced by bovine peripheral blood mononuclear cells following foot and mouth disease vaccination
Interleukin (IL)-17 is exclusively produced by CD4 helper T-cells upon activation. It most often acts as a pro-inflammatory cytokine, which stimulates the release of pro-inflammatory cytokines IL-6, IL-8, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF). In this study, we studied the in-vitro IL-17 response to specific antigens and a variety of mitogens and compared the IL-1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 174 12 شماره
صفحات -
تاریخ انتشار 2005