Dermal exposure to jet fuel suppresses delayed-type hypersensitivity: a critical role for aromatic hydrocarbons.

نویسندگان

  • Gerardo Ramos
  • Alberto Yairh Limon-Flores
  • Stephen E Ullrich
چکیده

Dermal exposure to military (JP-8) and/or commercial (Jet-A) jet fuel suppresses cell-mediated immune reactions. Immune regulatory cytokines and biological modifiers, including platelet activating factor (PAF), prostaglandin E(2), and interleukin-10, have been implicated in the pathway of events leading to immune suppression. It is estimated that approximately 260 different hydrocarbons are found in jet fuel, and the exact identity of the active immunotoxic agent(s) is unknown. The recent availability of synthetic jet fuel (S-8), which is refined from natural gas, and is devoid of aromatic hydrocarbons, made it feasible to design experiments to address this problem. Here we tested the hypothesis that the aromatic hydrocarbons present in jet fuel are responsible for immune suppression. We report that applying S-8 to the skin of mice does not upregulate the expression of epidermal cyclooxygenase-2 (COX-2) nor does it induce immune suppression. Adding back a cocktail of seven of the most prevalent aromatic hydrocarbons found in jet fuel (benzene, toluene, ethylbenzene, xylene, 1,2,4-trimethlybenzene, cyclohexylbenzene, and dimethylnaphthalene) to S-8 upregulated epidermal COX-2 expression and suppressed a delayed-type hypersensitivity (DTH) reaction. Injecting PAF receptor antagonists, or a selective cycloozygenase-2 inhibitor into mice treated with S-8 supplemented with the aromatic cocktail, blocked suppression of DTH, similar to data previously reported using JP-8. These findings identify the aromatic hydrocarbons found in jet fuel as the agents responsible for suppressing DTH, in part by the upregulation of COX-2, and the production of immune regulatory factors and cytokines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological and health effects of exposure to kerosene-based jet fuels and performance additives.

Over 2 million military and civilian personnel per year (over 1 million in the United States) are occupationally exposed, respectively, to jet propulsion fuel-8 (JP-8), JP-8 +100 or JP-5, or to the civil aviation equivalents Jet A or Jet A-1. Approximately 60 billion gallon of these kerosene-based jet fuels are annually consumed worldwide (26 billion gallon in the United States), including over...

متن کامل

Jet Fuel Kerosene is not Immunosuppressive in Mice or Rats Following Inhalation for 28 Days

Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel addit...

متن کامل

Pbpk Modeling Assessment of the Competitive Metabolic Interactions

PBPK MODELING ASSESSMENT OF THE COMPETITIVE METABOLIC INTERACTIONSFOR M-XYLENE, ETHYLBENZENE, AND A LUMPED AROMATIC FRACTION OF JP-8JET FUEL VAPORJerry L. Campbell and Jeffrey W. Fisher Jet Propellant 8 (JP-8), a kerosene-based jet fuel used in the military, is composed of hundreds of hydrocarbons. A PBPK model was developed to assess the metabolic interactions of JP-8 vapor on ...

متن کامل

آلودگی، منشاء و ارزیابی ریسک سلامت هیدروکربن‌های آروماتیک حلقوی در خاک‌های بخش مرکزی شهرستان بندرعباس

Background and Objective: Polycyclic aromatic hydrocarbons (PAHs) constitute a large class of organic compounds that are composed of two or more fused aromatic rings. Due to their potential mutagenic, carcinogenic and teratogenic effects on human health, PAHs have attracted particular concern. Therefore, in this study it was attempted to measure the PAHs concentration in the study area to evalu...

متن کامل

Catalytic conversion of isophorone to jet-fuel range aromatic hydrocarbons over a MoO(x)/SiO2 catalyst.

For the first time, jet fuel range C8-C9 aromatic hydrocarbons were synthesized in high carbon yield (∼80%) by the catalytic conversion of isophorone over MoO(x)/SiO2 at atmospheric pressure. A possible reaction pathway was proposed according to the control experiments and the intermediates generated during the reaction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 2007