Electrotactins: a class of adhesion proteins with conserved electrostatic and structural motifs.

نویسندگان

  • S A Botti
  • C E Felder
  • J L Sussman
  • I Silman
چکیده

The concept of an electrostatic motif on the surface of biological macromolecules as a definite topographical pattern of electrostatic potentials in three-dimensional space, provides a powerful tool for identification of functionally important regions on the surface of structurally related macromolecules. Using this approach, we identify a functional region common to cholinesterases (ChEs) and to a set of neural cell-adhesion proteins that have been suggested to be structurally related to cholinesterases due to their high sequence similarity, but lacking the key catalytically active serine. Quantitative analysis of the electrostatic surface potential in the area surrounding the entrance to the active site of acetylcholinesterase, and in the analogous zone for the ChE-like domain of the adhesion proteins reveals very good correlation. These findings, examined in the context of previous evidence involving this same region in a possible cell-recognition function for ChEs, leads us to define a class of adhesion proteins which we have named 'electrotactins'.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rab11 in Disease Progression

Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...

متن کامل

The roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk

Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...

متن کامل

A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses.

The non-enveloped fusogenic avian and Nelson Bay reoviruses encode homologous 10 kDa non-structural transmembrane proteins. The p10 proteins localize to the cell surface of transfected cells in a type I orientation and induce efficient cell-cell fusion. Mutagenic studies revealed the importance of conserved sequence-predicted structural motifs in the membrane association and fusogenic propertie...

متن کامل

In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...

متن کامل

Electrostatic tuning of permeation and selectivity in aquaporin water channels.

Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/18:1c9-palmitoyloleylphosphatidylethanolamine membrane was used for the simulations. During the simulations, wat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering

دوره 11 6  شماره 

صفحات  -

تاریخ انتشار 1998