Drosophila Hox and Sex-Determination Genes Control Segment Elimination through EGFR and extramacrochetae Activity
نویسندگان
چکیده
The formation or suppression of particular structures is a major change occurring in development and evolution. One example of such change is the absence of the seventh abdominal segment (A7) in Drosophila males. We show here that there is a down-regulation of EGFR activity and fewer histoblasts in the male A7 in early pupae. If this activity is elevated, cell number increases and a small segment develops in the adult. At later pupal stages, the remaining precursors of the A7 are extruded under the epithelium. This extrusion requires the up-regulation of the HLH protein Extramacrochetae and correlates with high levels of spaghetti-squash, the gene encoding the regulatory light chain of the non-muscle myosin II. The Hox gene Abdominal-B controls both the down-regulation of spitz, a ligand of the EGFR pathway, and the up-regulation of extramacrochetae, and also regulates the transcription of the sex-determining gene doublesex. The male Doublesex protein, in turn, controls extramacrochetae and spaghetti-squash expression. In females, the EGFR pathway is also down-regulated in the A7 but extramacrochetae and spaghetti-squash are not up-regulated and extrusion of precursor cells is almost absent. Our results show the complex orchestration of cellular and genetic events that lead to this important sexually dimorphic character change.
منابع مشابه
The elimination of an adult segment by the Hox gene Abdominal-B
Hox gene activity leads to morphological diversity of organs or structures in different species. One special case of Hox function is the elimination of a particular structure. The Abdominal-B Hox gene of Drosophila melanogaster provides an example of such activity, as this gene suppresses the formation of the seventh abdominal segment in the adult. This elimination occurs only in males, and is ...
متن کاملHox genes regulate the same character by different strategies in each segment
Hox genes control regional identity along the anterior-posterior axis in various animals. Each region contains morphological characteristics specific to that region as well as some that are shared by several different regions. The mechanism by which one Hox gene regulates region-specific characteristics has been extensively analyzed. However, little attention has been paid to the mechanism by w...
متن کاملHox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis.
Hox proteins provide axial positional information and control segment morphology in development and evolution. Yet how they specify morphological traits that confer segment identity and how axial positional information interferes with intrasegmental patterning cues during organogenesis remain poorly understood. We have investigated the control of Drosophila posterior spiracle morphogenesis, a s...
متن کاملSex comes in from the cold: the integration of sex and pattern.
There has recently been a revolution in our understanding of how the Drosophila sex-determination hierarchy generates somatic sexual dimorphism. Most significantly, the sex hierarchy has been shown to modulate the activities of well-known signaling molecules (FGF, Wnt and TGF beta proteins) and transcription factors (BAB and DAC) to direct various sex-specific aspects of growth and differentiat...
متن کاملSexually dimorphic regulation of the Wingless morphogen controls sex-specific segment number in Drosophila.
Sexual dimorphism is widespread throughout the metazoa and plays important roles in mate recognition and preference, sex-based niche partitioning, and sex-specific coadaptation. One notable example of sex-specific differences in insect body morphology is presented by the higher diptera, such as Drosophila, in which males develop fewer abdominal segments than females. Because diversity in segmen...
متن کامل