Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity
نویسندگان
چکیده
The increased demand of Wireless Sensor Networks (WSNs) in different areas of application have intensified studies dedicated to the deployment of sensor nodes in recent past. For deployment of sensor nodes some of the key objectives that need to be satisfied are coverage of the area to be monitored, net energy consumed by the WSN, lifetime of the network, and connectivity and number of deployed sensors. In this article the sensor node deployment task has been formulated as a constrained multi-objective optimization (MO) problem where the aim is to find a deployed sensor node arrangement to maximize the area of coverage, minimize the net energy consumption, maximize the network lifetime, and minimize the number of deployed sensor nodes while maintaining connectivity between each sensor node and the sink node for proper data transmission. We assume a tree structure between the deployed nodes and the sink node for data transmission. Our method employs a recently developed and very competitive multi-objective evolutionary algorithm (MOEA) known as MOEA/D-DE that uses a decomposition approach for converting the problem of approximation of the Pareto fronts (PF) into a number of single-objective optimization problems. This algorithm employs differential evolution (DE), one of the most powerful real parameter optimizers in current use, as its search method. The original MOEA/D has been modified by introducing a new fuzzy dominance based decomposition technique. The algorithm introduces a fuzzy Pareto dominance concept to compare two solutions and uses the scalar decomposition method only when one of the solutions fails to dominate the other in terms of a fuzzy dominance level. We have compared the performance of the resulting algorithm, called MOEA/DFD, with the original MOEA/D-DE and another very popular MOEA called Non-dominated Sorting Genetic Algorithm (NSGA-II). The best trade-off solutions from MOEA/DFD based node deployment scheme have also been compared with a few single-objective node deployment schemes based on the original DE, an adaptive DE-variant (JADE), original particle swarm optimization (PSO), and a state-of-the art variant of PSO (Comprehensive Learning PSO). In all the test instances, MOEA/DFD performs better than all other algorithms. Also the proposed multi-objective formulation of the problem adds more flexibility to the decision maker for choosing the necessary threshold of the objectives to be satisfied. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Gravitational Search Algorithm to Solve the K-of-N Lifetime Problem in Two-Tiered WSNs
Wireless Sensor Networks (WSNs) are networks of autonomous nodes used for monitoring an environment. In designing WSNs, one of the main issues is limited energy source for each sensor node. Hence, offering ways to optimize energy consumption in WSNs which eventually increases the network lifetime is strongly felt. Gravitational Search Algorithm (GSA) is a novel stochastic population-based meta-...
متن کاملDeployment-based lifetime optimization for linear wireless sensor networks considering both retransmission and discrete power control
A sophisticated method for node deployment can efficiently reduce the energy consumption of a Wireless Sensor Network (WSN) and prolong the corresponding network lifetime. Pioneers have proposed many node deployment based lifetime optimization methods for WSNs, however, the retransmission mechanism and the discrete power control strategy, which are widely used in practice and have large effect ...
متن کاملReliable Adaptive Data Aggregation Route Strategy for a Trade-off between Energy and Lifetime in WSNs
Mobile security is one of the most fundamental problems in Wireless Sensor Networks (WSNs). The data transmission path will be compromised for some disabled nodes. To construct a secure and reliable network, designing an adaptive route strategy which optimizes energy consumption and network lifetime of the aggregation cost is of great importance. In this paper, we address the reliable data aggr...
متن کاملLeach Routing Algorithm Optimization through Imperialist Approach
Routing is an important challenge in WSN due to the presence of hundreds or thousands of sensor nodes. Low Energy Adaptive Clustering Hierarchy (LEACH) is a hierarchical routing and data dissemination protocol. LEACH divides a network domain into several sub-domains that are called clusters. Non-uniformity of cluster distribution and CHs selection without considering the positions of other sens...
متن کاملCoverage and Connectivity Aware Neural Network Based Energy Efficient Routing in Wireless Sensor Networks
There are many challenges when designing and deploying wireless sensor networks (WSNs). One of the key challenges is how to make full use of the limited energy to prolong the lifetime of the network, because energy is a valuable resource in WSNs. The status of energy consumption should be continuously monitored after network deployment. In this paper, we propose coverage and connectivity aware ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 26 شماره
صفحات -
تاریخ انتشار 2013