Artificial Neural Networks for On-Line Trained Controllers
ثبت نشده
چکیده
This paper deals with the use of artificial neural networks employed as an on-line trained controller for a real process and simulation model control. Well-known back-propagation method is used as a learning algorithm intended to minimize the difference between the plant’s actual response and the desired reference signal. The influence of neural network’s parameters on a controlled plant output is discussed. We also attempted to find the rules of these parameters adjustment in view of the type of a transfer function in Laplace transform and tested the robustness of our controller burdened with the error signal. Some simulation and real process control results are also presented to evaluate the proposed design. Discussed in the last chapter are the possibilities of creating an adaptive neural controller. Key-Words: back-propagation, artificial neural nets, neural controller, adaptive neural controller
منابع مشابه
Engineering Application Of Correlation on Ann Estimated Mass
A functional relationship between two variables, applied mass to a weighing platform and estimated mass using Multi-Layer Perceptron Artificial Neural Networks is approximated by a linear function. Linear relationships and correlation rates are obtained which quantitatively verify that the Artificial Neural Network model is functioning satisfactorily. Estimated mass is achieved through recallin...
متن کاملHYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملFuzzy-neural Adaptation through Evolutionary Exploration
A general adaptation through 'exploration' approach for controlling discrete event systems is presented. In this approach optimal controllers for a few operating conditions are determined (exploration) and an on-line adaptation module is trained on this data for generalization. A machinerepair example is formulated to illustrate the general control method. The on-line adaptation mechanism is ap...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملPrediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks
This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...
متن کاملPredicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests
In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty) and three relative densities (%30, %50, and %90) were injecte...
متن کامل