Improving the Round Complexity of Ideal-Cipher Constructions

نویسنده

  • Aishwarya Thiruvengadam
چکیده

Title of dissertation: IMPROVING THE ROUND COMPLEXITY OF IDEAL-CIPHER CONSTRUCTIONS Aishwarya Thiruvengadam, Doctor of Philosophy, 2017 Dissertation directed by: Professor Jonathan Katz Department of Computer Science Block ciphers are an essential ingredient of modern cryptography. They are widely used as building blocks in many cryptographic constructions such as encryption schemes, hash functions etc. The security of block ciphers is not currently known to reduce to well-studied, easily formulated, computational problems. Nevertheless, modern block-cipher constructions are far from ad-hoc, and a strong theory for their design has been developed. Two classical paradigms for block cipher design are the Feistel network and the key-alternating cipher (which is encompassed by the popular substitution-permutation network). Both of these paradigms that are iterated structures that involve applications of random-looking functions/permutations over many rounds. An important area of research is to understand the provable security guarantees offered by these classical design paradigms for block cipher constructions. This can be done using a security notion called indifferentiability which formalizes what it means for a block cipher to be ideal. In particular, this notion allows us to assert the structural robustness of a block cipher design. In this thesis, we apply the indifferentiability notion to the two classical paradigms mentioned above and improve upon the previously known round complexity in both cases. Specifically, we make the following two contributions: • We show that a 10-round Feistel network behaves as an ideal block cipher when the keyed round functions are built using a random oracle. • We show that a 5-round key-alternating cipher (also known as the iterated Even-Mansour construction) with identical round keys behaves as an ideal block cipher when the round permutations are independent, public random permutations. IMPROVING THE ROUND COMPLEXITY OF IDEAL-CIPHER CONSTRUCTIONS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Fixed Point Attacks on GOST2 Block Cipher

GOST block cipher designed in the 1970s and published in 1989 as the Soviet and Russian standard GOST 28147-89. In order to enhance the security of GOST block cipher after proposing various attacks on it, designers published a modified version of GOST, namely GOST2, in 2015 which has a new key schedule and explicit choice for S-boxes. In this paper, by using three exactly identical portions of ...

متن کامل

Impossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)

Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...

متن کامل

Impossible Differential Cryptanalysis on Deoxys-BC-256

Deoxys is a final-round candidate of the CAESAR competition. Deoxys is built upon an internal tweakable block cipher Deoxys-BC, where in addition to the plaintext and key, it takes an extra non-secret input called a tweak. This paper presents the first impossible differential cryptanalysis of Deoxys-BC-256 which is used in Deoxys as an internal tweakable block cipher. First, we find a 4.5-round...

متن کامل

Total break of Zorro using linear and differential attacks

An AES-like lightweight block cipher, namely Zorro, was proposed in CHES 2013. While it has a 16-byte state, it uses only 4 S-Boxes per round. This weak nonlinearity was widely criticized, insofar as it has been directly exploited in all the attacks on Zorro reported by now, including the weak key, reduced round, and even full round attacks. In this paper, using some properties discovered by Wa...

متن کامل

Provable Security and Indifferentiability

In this thesis we consider different problems related to provable security and indifferentiability framework. Ideal primitives such as random oracles, ideal ciphers are theoretical abstractions of cryptographic hash functions and block ciphers respectively. These idealized models help us to argue security guarantee for various cryptographic schemes, for which standard model security proofs are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017