New bounds for roots of polynomials based on Fiedler companion matrices∗

نویسندگان

  • Fernando De Terán
  • Froilán M. Dopico
  • Javier Pérez
چکیده

Several matrix norms of the classical Frobenius companion matrices of a monic polynomial p(z) have been used in the literature to obtain simple lower and upper bounds on the absolute values of the roots λ of p(z). Recently, M. Fiedler has introduced a new family of companion matrices of p(z) (Lin. Alg. Appl., 372 (2003) 325-331) that has received considerable attention and it is natural to investigate if matrix norms of Fiedler companion matrices may be used to obtain new and sharper lower and upper bounds on |λ|. The development of such bounds requires first to know simple expressions for some relevant matrix norms of Fiedler matrices and we obtain them in the case of the 1and ∞matrix norms. With these expressions at hand, we will show that norms of Fiedler matrices produce many new bounds, but that none of them improves significatively the classical bounds obtained from the Frobenius companion matrices. However, we will prove that if the norms of the inverses of Fiedler matrices are used, then another family of new bounds on |λ| is obtained and some of the bounds in this family improve significatively the bounds coming from the Frobenius companion matrices for certain polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backward stability of polynomial root-finding using Fiedler companion matrices

Computing roots of scalar polynomials as the eigenvalues of Frobenius companion matrices using backward stable eigenvalue algorithms is a classical approach. The introduction of new families of companion matrices allows for the use of other matrices in the root-finding problem. In this paper, we analyze the backward stability of polynomial root-finding algorithms via Fiedler companion matrices....

متن کامل

A note on companion pencils

Various generalizations of companion matrices to companion pencils are presented. Companion matrices link to monic polynomials, whereas companion pencils do not require monicity of the corresponding polynomial. In the classical companion pencil case (A,B) only the coefficient of the highest degree appears in B’s lower right corner. We will show, however, that all coefficients of the polynomial ...

متن کامل

A solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials

In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.

متن کامل

An Explicit Jordan Decomposition of Companion Matrices

We derive a closed form for the Jordan decomposition of companion matrices including properties of generalized eigenvectors. As a consequence, we provide a formula for the inverse of confluent Vandermonde matrices and results on sensitivity of multiple roots of polynomials.

متن کامل

Estimates for the Numerical Radius and the Spectral Radius of the Frobenius Companion Matrix and Bounds for the Zeros of Polynomials

We apply numerical radius and spectral radius estimates to the Frobenius companion matrices of monic polynomials to derive new bounds for their zeros and give different proofs of some known bounds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013