Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays
نویسندگان
چکیده
A new type of light trapping structure utilizing ring-shaped metallic nanocavity arrays is proposed for the absorption enhancement in ultrathin solar cells with few photonic waveguide modes. Dozens of times of broadband absorption enhancement in the spectral range of 700 to 1100 nm is demonstrated in an ultrathin Si3N4/c-Si/Ag prototype solar cell by means of finite-difference time-domain (FDTD) simulation, and this dramatic absorption enhancement can be attributed to the excitation of plasmonic cavity modes in these nanocavity arrays. The cavity modes optimally compensate for the lack of resonances in the longer wavelength range for ultrathin solar cells, and eventually a maximum Jsc enhancement factor of 2.15 is achieved under AM 1.5G solar illumination. This study opens a new perspective for light management in thin film solar cells and other optoelectronic devices.
منابع مشابه
Numerical Study of Complementary Nanostructures for Light Trapping in Colloidal Quantum Dot Solar Cells
We have investigated two complementary nanostructures, nanocavity and nanopillar arrays, for light absorption enhancement in depleted heterojunction colloidal quantum dot (CQD) solar cells. A facile complementary fabrication process is demonstrated for patterning these nanostructures over the large area required for light trapping in photovoltaic devices. The simulation results show that both p...
متن کاملOmnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces
Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and...
متن کاملOptimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells.
Nanophotonic structures have attracted attention for light trapping in solar cells with the potential to manage and direct light absorption on the nanoscale. While both randomly textured and nanophotonic structures have been investigated, the relationship between photocurrent and the spatial correlations of random or designed surfaces has been unclear. Here we systematically design pseudorandom...
متن کاملInverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption
We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and u...
متن کاملSolar cell efficiency enhancement using a hemisphere texture containing metal nanostructures
One major problem of the conventional solar cells is low conversion efficiency. In this work, we have proposed a new design including hemisphere texturing on top and metallic plasmonic nanostructure under the silicon layer to enhance the optical absorption inside the photosensitive layer. The finite-difference time-domain (FDTD) method has been used to investigate the interaction of light wi...
متن کامل