On The Exact Security of Message Authentication Using Pseudorandom Functions
نویسندگان
چکیده
Traditionally, modes of Message Authentication Codes(MAC) such as Cipher Block Chaining (CBC) are instantiated using block ciphers or keyed Pseudo Random Permutations(PRP). However, one can also use domain preserving keyed Pseudo Random Functions(PRF) to instantiate MAC modes. The very first security proof of CBC-MAC [BKR00], essentially modeled the PRP as a PRF. Until now very little work has been done to investigate the difference between PRP vs PRF instantiations. Only known result is the rather loose folklore PRP-PRF transition of any PRP based security proof, which looses a factor of O( 2 2n ) (domain of PRF/PRP is {0, 1} and adversary makes σ many PRP/PRF calls in total). This loss is significant, considering the fact tight Θ( q 2 2n ) security bounds have been known for PRP based EMAC and ECBC constructions (where q is the total number of adversary queries). In this work, we show for many variations of encrypted CBC MACs (i.e. EMAC, ECBC, FCBC, XCBC and TCBC), random function based instantiation has a security bound O( qσ 2n ). This is a significant improvement over the folklore PRP/PRF transition. We also show this bound is optimal by providing an attack against the underlying PRF based CBC construction. This shows for EMAC, ECBC and FCBC, PRP instantiations are substantially more secure than PRF instantiations. Where as, for XCBC and TMAC, PRP instantiations are at least as secure as PRF instantiations.
منابع مشابه
3C- A Provably Secure Pseudorandom Function and Message Authentication Code.A New mode of operation for Cryptographic Hash Function
We propose a new cryptographic construction called 3C, which works as a pseudorandom function (PRF), message authentication code (MAC) and cryptographic hash function. The 3Cconstruction is obtained by modifying the Merkle-Damg̊ard iterated construction used to construct iterated hash functions. We assume that the compression functions of Merkle-Damg̊ard iterated construction realize a family of ...
متن کاملCryptographic Hash Functions: Cryptanalysis, Design and Applications
Cryptographic hash functions are an important tool in cryptography to achieve certain security goals such as authenticity, digital signatures, digital time stamping, and entity authentication. They are also strongly related to other important cryptographic tools such as block ciphers and pseudorandom functions. The standard and widely used hash functions such as MD5 and SHA-1 follow the design ...
متن کاملStateless Evaluation of Pseudorandom Functions: Security beyond the Birthday Barrier
Many cryptographic solutions based on pseudorandom functions (for common problems like encryption, message-authentication or challenge-response protocols) have the following feature: There is a stateful (counter based) version of the scheme that has high security, but if, to avoid the use of state, we substitute a random value for the counter, the security of the scheme drops below the birthday...
متن کاملConcrete Security Characterizations of PRFs and PRPs: Reductions and Applications
We investigate several alternate characterizations of pseudorandom functions (PRFs) and pseudorandom permutations (PRPs) in a concrete security setting. By analyzing the concrete complexity of the reductions between the standard notions and the alternate ones, we show that the latter, while equivalent under polynomial-time reductions, are weaker in the concrete security sense. With these altern...
متن کاملOn the Security of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1⋆
HMAC is a widely used message authentication code and a pseudorandom function generator based on cryptographic hash functions such as MD5 and SHA-1. It has been standardized by ANSI, IETF, ISO and NIST. HMAC is proved to be secure as long as the compression function of the underlying hash function is a pseudorandom function. In this paper we devise two new distinguishers of the structure of HMA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017