Efficient Pairwise Classification
نویسندگان
چکیده
Pairwise classification is a class binarization procedure that converts a multi-class problem into a series of two-class problems, one problem for each pair of classes. While it can be shown that for training, this procedure is more efficient than the more commonly used oneagainst-all approach, it still has to evaluate a quadratic number of classifiers when computing the predicted class for a given example. In this paper, we propose a method that allows a faster computation of the predicted class when weighted or unweighted voting are used for combining the predictions of the individual classifiers. While its worst-case complexity is still quadratic in the number of classes, we show that even in the case of completely random base classifiers, our method still outperforms the conventional pairwise classifier. For the more practical case of well-trained base classifiers, its asymptotic computational complexity seems to be almost linear.
منابع مشابه
A new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملEfficient voting prediction for pairwise multilabel classification
The pairwise approach to multilabel classification reduces the problem to learning and aggregating preference predictions among the possible labels. A key problem is the need to query a quadratic number of preferences for making a prediction. To solve this problem, we extend the recently proposed QWeighted algorithm for efficient pairwise multiclass voting to the multilabel setting, and evaluat...
متن کاملEfficient Pairwise Multilabel Classification for Large-Scale Problems in the Legal Domain
In this paper we applied multilabel classification algorithms to the EUR-Lex database of legal documents of the European Union. On this document collection, we studied three different multilabel classification problems, the largest being the categorization into the EUROVOC concept hierarchy with almost 4000 classes. We evaluated three algorithms: (i) the binary relevance approach which independ...
متن کاملImproving Classification with Pairwise Constraints: A Margin-Based Approach
In this paper, we address the semi-supervised learning problem when there is a small amount of labeled data augmented with pairwise constraints indicating whether a pair of examples belongs to a same class or different classes. We introduce a discriminative learning approach that incorporates pairwise constraints into the conventional margin-based learning framework. We also present an efficien...
متن کاملEfficient Pairwise Classification Using Local Cross Off Strategy
The pairwise classification approach tends to perform better than other well-known approaches when dealing with multiclass classification problems. In the pairwise approach, however, the nuisance votes of many irrelevant classifiers may result in a wrong prediction class. To overcome this problem, a novel method, Local Crossing Off (LCO), is presented and evaluated in this paper. The proposed L...
متن کامل