Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation
نویسندگان
چکیده
Coral calcification is dependent on the mutualistic partnership between endosymbiotic zooxanthellae and the coral host. Here, using newly developed geochemical proxies (δ11B and B/Ca), we show that Porites corals from natural reef environments exhibit a close (r2 ∼0.9) antithetic relationship between dissolved inorganic carbon (DIC) and pH of the corals' calcifying fluid (cf). The highest DICcf (∼ × 3.2 seawater) is found during summer, consistent with thermal/light enhancement of metabolically (zooxanthellae) derived carbon, while the highest pHcf (∼8.5) occurs in winter during periods of low DICcf (∼ × 2 seawater). These opposing changes in DICcf and pHcf are shown to maintain oversaturated but stable levels of carbonate saturation (Ωcf ∼ × 5 seawater), the key parameter controlling coral calcification. These findings are in marked contrast to artificial experiments and show that pHcf upregulation occurs largely independent of changes in seawater carbonate chemistry, and hence ocean acidification, but is highly vulnerable to thermally induced stress from global warming.
منابع مشابه
Reconstructing coral calcification fluid dissolved inorganic carbon chemistry from skeletal boron: An exploration of potential controls on coral aragonite B/Ca
The boron geochemistry of coral skeletons reflects the dissolved inorganic carbon (DIC) chemistry of the calcification fluid from which the skeletons precipitates and may be a valuable tool to investigate the effects of climate change on coral calcification. In this paper I calculate the predicted B/Ca of aragonite precipitating from seawater based fluids as a function of pH, [DIC] and [Ca2+]. ...
متن کاملPast, present and future state of the carbonate system and acidification in Hengam coral reef in the Persian Gulf
Assuming the possible scenario ICCP RCP8.5, by 2100, the pH of seawater in Hengam coral reef in the Persian Gulf will decrease by 0.46 compared to 1880 (to less than 7.72). Total dissolved inorganic carbon will increase from 2006 to 2263 µmol/kg. The concentration of bicarbonate ions will increase by 24% and the carbonate ions will decrease by 51%. The saturation of calcium carbonate in seawate...
متن کاملMicroelectrode characterization of coral daytime interior pH and carbonate chemistry
Reliably predicting how coral calcification may respond to ocean acidification and warming depends on our understanding of coral calcification mechanisms. However, the concentration and speciation of dissolved inorganic carbon (DIC) inside corals remain unclear, as only pH has been measured while a necessary second parameter to constrain carbonate chemistry has been missing. Here we report the ...
متن کاملCoral-algae metabolism and diurnal changes in the CO2-carbonate system of bulk sea water
Precise measurements were conducted in continuous flow seawater mesocosms located in full sunlight that compared metabolic response of coral, coral-macroalgae and macroalgae systems over a diurnal cycle. Irradiance controlled net photosynthesis (P net), which in turn drove net calcification (G net), and altered pH. P net exerted the dominant control on [CO3 (2-)] and aragonite saturation state ...
متن کاملEffects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef
Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking...
متن کامل