The remarkable similarity between the acid-base properties of ISFETs and proteins and the consequences for the design of ISFET biosensors

نویسنده

  • P. Bergveld
چکیده

Studying the acid-base properties of protein molecules led us to reconsider the operational mechanism of ISFETs. Based on the site-dissociation model, applied to the amphoteric metal oxide gate materials used in ISFETs, the sensitivity of ISFETs is described in terms of the intrinsic buffer capacity of the oxide surface,/3s, and the electrical surface capacitance, Cs. The ISFET sensitivity towards changes in the bulk pH is fully described by the ratio /3s/ C~. Practical measurements support this theoretical approach. The new approach to the description of the acid-base properties of ISFETs is analogous to the classical description of the acid-base properties of protein molecules. The acid-base titration of proteins is also determined by the ratio between the intrinsic buffer capacity and the electrical double layer capacitance. In addition to the amazing conclusion that ISFET surfaces and protein molecules behave in a similar way with respect to their acid-base properties, further conclusions are drawn with respect to the possibility of protein characterization by means of dynamic measurements with protein covered ISFETs. Design rules are given for this type of biosensors, based on the theoretical understanding of the acid-base behaviour of both sensor parts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review on Graphene FET and its Application in Biosensing

Graphene, after its first production in 2004 have received lots of attentions from researchers because of its unique properties. High mobility, high sensitivity, high selectivity and high surface area make graphene excellent choice for bio application. One of promising graphene base device that has amazingly high sensitivity is graphene field-effect transistor (GFET). This review selectively su...

متن کامل

Review on Graphene FET and its Application in Biosensing

Graphene, after its first production in 2004 have received lots of attentions from researchers because of its unique properties. High mobility, high sensitivity, high selectivity and high surface area make graphene excellent choice for bio application. One of promising graphene base device that has amazingly high sensitivity is graphene field-effect transistor (GFET). This review selectively su...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Biologically sensitive field-effect transistors: from ISFETs to NanoFETs

Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element...

متن کامل

Modeling Ion Sensitive Field Effect Transistors for Biosensor Applications

During recent decades increasing interest has been shown in the development of biosensors based on ion sensitive field effect transistors (ISFETs). Many ISFET– based pH sensors have been already commercialized and attempts have also been made to commercialize ISFETbased biosensors for applications in the fields of medical, environmental, food safety, military and biotechnology areas. The growin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003