Advances of two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process
نویسندگان
چکیده
Two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process proposed by State Key Laboratory of Heavy oil Processing, China University of Petroleum, can remarkably enhance the propylene yield and minimize the dry gas and coke yields, and obtain high-quality light oils (gasoline and diesel). It has been commercialized since 2006. Up to now, three TMP commercial units have been put into production and other four commercial units are under design and construction. The commercial data showed that taking paraffinic based Daqing (China) atmospheric residue as the feedstock, the propylene yield reached 20.31 wt%, the liquid products yield (the total yield of liquefied petroleum gas, gasoline, and diesel) was 82.66 wt%, and the total yield of dry gas and coke was 14.28 wt%. Moreover, the research octane number of gasoline could be up to 96.
منابع مشابه
Multifunctional two-stage riser fluid catalytic cracking process
This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis o...
متن کاملOlefin production from catalytic cracking of light fuel oil over different additives
The catalytic cracking of a fuel oil over fluid catalytic cracking (FCC) catalyst has been investigated applying different additives. Catalyst mixtures consisting of a equilibrium FCC catalyst (E-Cat) blended with ZSM-5, MCM-41 and Mordenite additives were examined at the additive levels of 25 wt.%. The catalytic performance of the matrix was studied in a fixed bed micro-activity test unit (MAT...
متن کاملPrediction of gasoline yield in a fluid catalytic cracking (FCC) riser using k-epsilon turbulence and 4-lump kinetic models: A computational fluid dynamics (CFD) approach
FCC riser; Computational fluid dynamics (CFD); Cracking reaction kinetics; Hydrodynamics; 4-Lump kinetic model; k-Epsilon turbulence model Abstract Fluid catalytic cracking (FCC) is an essential process for the conversion of gas oil to gasoline. This study is an effort to model the phenomenon numerically using commercial computational fluid dynamics (CFD) software, heavy density catalyst and 4-...
متن کاملOlefin production from catalytic cracking of light fuel oil over different additives
The catalytic cracking of a fuel oil over fluid catalytic cracking (FCC) catalyst has been investigated applying different additives. Catalyst mixtures consisting of a equilibrium FCC catalyst (E-Cat) blended with ZSM-5, MCM-41 and Mordenite additives were examined at the additive levels of 25 wt.%. The catalytic performance of the matrix was studied in a fixed bed micro-activity test unit (MAT...
متن کاملThree Dimensional Simulation of Catalytic Cracking Reactions in an Industrial Scale Riser Using a 11-lump Kinetic
Most studies neglect the presence of thermal cracking reactions in industrial FCC process. Nevertheless, the present work proposes a new model which modified the 10-lumps kinetic model given by Jacob el al. (1976), through to inclusion a new lump named dry gas represent the results of the thermal reactions. Similarly as in the 10-lumps kinetic model, the proposed 11-lumps kinetic model consider...
متن کامل