Biliverdin reductase: a target for cancer therapy?
نویسندگان
چکیده
Biliverdin reductase (BVR) is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s) of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1, and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ, and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation.
منابع مشابه
Computational and experimental studies on the catalytic mechanism of biliverdin-IXbeta reductase.
BVR-B (biliverdin-IXbeta reductase) also known as FR (flavin reductase) is a promiscuous enzyme catalysing the pyridine-nucleotide-dependent reduction of a variety of flavins, biliverdins, PQQ (pyrroloquinoline quinone) and ferric ion. Mechanistically it is a good model for BVR-A (biliverdin-IXalpha reductase), a potential pharmacological target for neonatal jaundice and also a potential target...
متن کاملInitial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B).
The initial-rate kinetics of the flavin reductase reaction catalysed by biliverdin-IXbeta reductase at pH 7.5 are consistent with a rapid-equilibrium ordered mechanism, with the pyridine nucleotide binding first. NADPH binding to the free enzyme was characterized using stopped-flow fluorescence quenching, and a K(d) of 15.8 microM was calculated. Equilibrium fluorescence quenching experiments i...
متن کاملNew insights into biliverdin reductase functions: linking heme metabolism to cell signaling.
Biliverdin reductase (BVR) functions in cell signaling through three distinct tracks: a dual-specificity kinase that functions in the insulin receptor/MAPK pathways (25, 29, 51); a bzip-type transcription factor for ATF-2/CREB and HO-1 regulation (1, 25); and a reductase that catalyzes the conversion of biliverdin to bilirubin (27). These, together with the protein's primary and secondary featu...
متن کاملSome physical and immunological properties of ox kidney biliverdin reductase.
The liver, kidney and spleen of the mouse and rat and the kidney and spleen of the ox express a monomeric form of biliverdin reductase (Mr 34,000), which in the case of the ox kidney enzyme exists in two forms (pI 5.4 and 5.2) that are probably charge isomers. The livers of the mouse and rats express, in addition, a protein (Mr 46,000) that cross-reacts with antibodies raised against the ox kid...
متن کاملBiliverdin reductase mediates hypoxia-induced EMT via PI3-kinase and Akt.
Chronic hypoxia in the renal parenchyma is thought to induce epithelial-to-mesenchymal transition (EMT), leading to fibrogenesis and ultimately end-stage renal failure. Biliverdin reductase, recently identified as a serine/threonine/tyrosine kinase that may activate phosphatidylinositol 3-kinase (PI3K) and Akt, is upregulated in response to reactive oxygen species that may accompany hypoxia. We...
متن کامل