Time-Reversal Symmetric U(1) Quantum Spin Liquids

نویسنده

  • Chong Wang
چکیده

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We study possible quantum Uð1Þ spin liquids in three dimensions with time-reversal symmetry. We find a total of seven families of such Uð1Þ spin liquids, distinguished by the properties of their emergent electric or magnetic charges. We show how these spin liquids are related to each other. Two of these classes admit nontrivial protected surface states which we describe. We show how to access all of the seven spin liquids through slave particle (parton) constructions. We also provide intuitive loop gas descriptions of their ground-state wave functions. One of these phases is the " topological Mott insulator, " conventionally described as a topological insulator of an emergent fermionic " spinon. " We show that this phase admits a remarkable dual description as a topological insulator of emergent fermionic magnetic monopoles. This results in a new (possibly natural) surface phase for the topological Mott insulator and a new slave particle construction. We describe some of the continuous quantum phase transitions between the different Uð1Þ spin liquids. Each of these seven families of states admits a finer distinction in terms of their surface properties, which we determine by combining these spin liquids with symmetry-protected topological phases. We discuss lessons for materials such as pyrochlore quantum spin ices which may harbor a Uð1Þ spin liquid. We suggest the topological Mott insulator as a possible ground state in some range of parameters for the quantum spin ice Hamiltonian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Abelian spin liquid in a spin-one quantum magnet.

We study a time-reversal invariant non-Abelian spin-liquid state in an SU(2) symmetric spin S=1 quantum magnet on a triangular lattice. The spin liquid is obtained by quantum disordering a noncollinear nematic state. We show that such a spin liquid cannot be obtained by the standard projective construction for spin liquids. We also study the phase transition between the spin liquid and the nonc...

متن کامل

Quantum Orders and Symmetric Spin Liquids

A concept – quantum order – is introduced to describe a new kind of orders that generally appear in quantum states at zero temperature. Quantum orders that characterize universality classes of quantum states (described by complex ground state wave-functions) is much richer then classical orders that characterize universality classes of finite temperature classical states (described by positive ...

متن کامل

Classification of spin liquids on the square lattice with strong spin-orbit coupling

Spin liquids represent exotic types of quantum matter that evade conventional symmetry-breaking order even at zero temperature. Exhaustive classifications of spin liquids have been carried out in several systems, particularly in the presence of full SU(2) spin-rotation symmetry. Real magnetic compounds, however, generically break SU(2) spin symmetry as a result of spin-orbit coupling— which in ...

متن کامل

Interactions and broken time-reversal symmetry in chaotic quantum dots

When treating interactions in quantum dots within a random-phase-approximation sRPAd-like approach, time-reversal symmetry plays an important role as higher-order terms—the Cooper series—need to be included when this symmetry is present. Here we consider model quantum dots in a magnetic field weak enough to leave the dynamics of the dot chaotic, but strong enough to break time-reversal symmetry...

متن کامل

Time reversal and n-qubit canonical decompositions

On pure states of n quantum bits, the concurrence entanglement monotone returns the norm of the inner product of a pure state with its spin-flip. The monotone vanishes for n odd, but for n even there is an explicit formula for its value on mixed states, i.e., a closed-form expression computes the minimum over all ensemble decompositions of a given density. For n even a matrix decomposition n=k1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016