Reactions of alternate substrates demonstrate stereoelectronic control of reactivity in dialkylglycine decarboxylase.
نویسندگان
چکیده
Kinetic and product analyses of the reactions of dialkylglycine decarboxylase with several alternative substrates are presented. Rate constants for the reactions of amino and keto acids of several substrates decrease logarithmically with increasing side-chain size. Conversely, kcat for L-amino acid decarboxylation increases with side-chain size. These and other data confirm a proposed model for three binding subsites in the active site. In this model, bond making and breaking in both the decarboxylation and transamination half-reactions occurs at the "A" subsite, which maintains the scissile bond aligned with the p orbitals of the conjugated aldimine and thus maximizes stereoelectronic effects. This strongly supports the proposal by Dunathan (Proc. Natl. Acad. Sci. U.S.A. 55, 712-716) that PLP-dependent enzymes can largely control reaction specificity by specific orientation about C alpha in the external aldimine intermediate. The "B" subsite can accept either an alkyl or a carboxylate group, while the "C" subsite accepts only small alkyl groups. This model predicts the existence of nonproductive binding modes for amino acids, which is proposed to be the ultimate origin of the kcat increase with side-chain size for L-amino acid decarboxylation. The specificity of the 2-aminoisobutyrate decarboxylation half-reaction toward oxidative decarboxylation is very high (< 1 in 10(5) turnovers yields nonoxidative decarboxylation). The origin of this specificity is explored with the reactions of amino- and methylaminomalonate. These substrates exhibit high yields of nonoxidative decarboxylation, providing support for a model in which the interaction between a carboxylate group in the B subsite and Arg406 is a prerequisite to proton donation to and removal from C alpha.
منابع مشابه
Pre-steady-state kinetic analysis of the reactions of alternate substrates with dialkylglycine decarboxylase.
The pre-steady-state kinetics of the half-reactions of several substrates with dialkylglycine decarboxylase are examined by multiwavelength kinetics and global analysis. The substrates examined fall into two groups: those that exhibit simple, monophasic kinetics and those that exhibit biphasic kinetics. The rate of the AIB half-reaction is likely limited by the decarboxylation step based on the...
متن کاملRole of Q52 in catalysis of decarboxylation and transamination in dialkylglycine decarboxylase.
Dialkylglycine decarboxylase (DGD) is a pyridoxal phosphate dependent enzyme that catalyzes both decarboxylation and transamination in its normal catalytic cycle. DGD uses stereoelectronic effects to control its unusual reaction specificity. X-ray crystallographic structures of DGD suggest that Q52 is important in maintaining the substrate carboxylate in a stereoelectronically activated positio...
متن کاملStructural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase.
Two refined structures, differing in alkali metal ion content, of the bifunctional, pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase (DGD) are presented in detail. The enzyme is an alpha 4 tetramer, built up as a dimer of dimers, with a subunit molecular mass of 46.5 kDa. The fold of DGD is similar to those of aspartate aminotransferase, omega-amino acid aminotransferase and ty...
متن کاملRapid kinetic and isotopic studies on dialkylglycine decarboxylase.
The two half-reactions of the pyridoxal 5'-phosphate (PLP)-dependent enzyme dialkylglycine decarboxylase (DGD) were studied individually by multiwavelength stopped-flow spectroscopy. Biphasic behavior was found for the reactions of DGD-PLP, consistent with two coexisting conformations observed in steady-state kinetics [Zhou, X., and Toney, M. D. (1998) Biochemistry 37, 5761--5769]. The half-rea...
متن کاملAnalysis of catalytic determinants of diaminopimelate and ornithine decarboxylases using alternate substrates.
Diaminopimelate decarboxylase (DAPDC) and ornithine decarboxylase (ODC) are pyridoxal 5'-phosphate dependent enzymes that are critical to microbial growth and pathogenicity. The latter is the target of drugs that cure African sleeping sickness, while the former is an attractive target for antibacterials. These two enzymes share the (β/α)(8) (i.e., TIM barrel) fold with alanine racemase, another...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 37 11 شماره
صفحات -
تاریخ انتشار 1998