Phosphorus immobilization in micropores of drinking-water treatment residuals: implications for long-term stability.
نویسندگان
چکیده
Drinking-water treatment residuals (WTRs) can immobilize excess soil phosphorus (P), but little is known about the long-term P retention by WTRs. To evaluate the long-term P sorption characteristics of one Fe- and one Al-based WTR, physicochemical properties pertinent to time-dependency and hysteresis of P sorption were assessed. This study also investigated the P sorption mechanisms that could affect the long-term stability of sorbed P by WTRs. Phosphorus sorption kinetics by the WTRs exhibited a slow phase that followed an initial rapid phase, as typically occurs with metal hydroxides. Phosphorus sorption maxima for both Fe- and Al-based WTRs exceeded 9100 mg of P kg(-1) and required a greater specific surface area (SSA) than would be available based on BET-N2 calculations. Electron microprobe analyses of cross-sectional, P-treated particles showed three-dimensional P sorption by WTRs. Carbon dioxide gas sorption was greater than N2, suggesting steric restriction of N2 diffusion by narrow micropore openings. Phosphorus-treated Co2 SSAs were reduced by P treatment, suggesting P sorption by micropores (5-20 A). Mercury intrusion porosimetry indicated negligible macroporosity (pores > 500 A). Slow P sorption kinetics by WTRs may be explained by intraparticle P diffusion in micropores. Micropore-bound P should be stable and immobilized over long periods.
منابع مشابه
Long-term phosphorus immobilization by a drinking water treatment residual.
Excessive soluble P in runoff is a common cause of eutrophication in fresh waters. Evidence indicates that drinking water treatment residuals (WTRs) can reduce soluble P concentrations in P-impacted soils in the short term (days to weeks). The long-term (years) stability of WTR-immobilized P has been inferred, but validating field data are scarce. This research was undertaken at two Michigan fi...
متن کاملDrinking water treatment residuals: a review of recent uses.
Coagulants such as alum [Al2(SO4)3 x 14H2O], FeCl3, or Fe2(SO4)3 are commonly used to remove particulate and dissolved constituents from water supplies in the production of drinking water. The resulting waste product, called water-treatment residuals (WTR), contains precipitated Al and Fe oxyhydroxides, resulting in a strong affinity for anionic species. Recent research has focused on using WTR...
متن کاملIntraparticle phosphorus diffusion in a drinking water treatment residual at room temperature.
Phosphorus (P) has been recognized as one of the major limiting nutrients that are responsible for eutrophication of surface waters, worldwide. Efforts have been concentrated on reducing P loads reaching water bodies, via surface runoff and/or leaching through a soil profile. Use of drinking water treatment residuals (WTRs) is an emerging cost-effective practice to reduce soluble P in poorly P-...
متن کاملManure phosphorus extractability as affected by aluminum- and iron by-products and aerobic composting.
Shifts in manure phosphorus (P) chemical forms and pool sizes induced by water treatment residuals and industrial mineral by-products are largely undefined. We conducted a manure P fractionation study to determine mechanisms of reduction of dissolved reactive phosphorus (DRP) in poultry manure upon mineral by-product additions. The effects of composting on the P immobilization efficacy of the b...
متن کاملBiological Instability in a Chlorinated Drinking Water Distribution Network
The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking wate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 38 24 شماره
صفحات -
تاریخ انتشار 2004