Mechanism of release and fate of excised oligonucleotides during nucleotide excision repair.

نویسندگان

  • Michael G Kemp
  • Joyce T Reardon
  • Laura A Lindsey-Boltz
  • Aziz Sancar
چکیده

A wide range of environmental and carcinogenic agents form bulky lesions on DNA that are removed from the human genome in the form of short, ∼30-nucleotide oligonucleotides by the process of nucleotide excision repair. Although significant insights have been made regarding the mechanisms of damage recognition, dual incisions, and repair resynthesis during nucleotide excision repair, the fate of the dual incision/excision product is unknown. Using excision assays with both mammalian cell-free extract and purified proteins, we unexpectedly discovered that lesion-containing oligonucleotides are released from duplex DNA in complex with the general transcription and repair factor, Transcription Factor IIH (TFIIH). Release of excision products from TFIIH requires ATP but not ATP hydrolysis, and release occurs slowly, with a t(1/2) of 3.3 h. Excised oligonucleotides released from TFIIH then become bound by the single-stranded binding protein Replication Protein A or are targeted by cellular nucleases. These results provide a mechanism for release and an understanding of the initial fate of excised oligonucleotides during nucleotide excision repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly specific and sensitive method for measuring nucleotide excision repair kinetics of ultraviolet photoproducts in human cells

The nucleotide excision repair pathway removes ultraviolet (UV) photoproducts from the human genome in the form of short oligonucleotides ∼ 30 nt in length. Because there are limitations to many of the currently available methods for investigating UV photoproduct repair in vivo, we developed a convenient non-radioisotopic method to directly detect DNA excision repair events in human cells. The ...

متن کامل

Detection of the Excised, Damage‐containing Oligonucleotide Products of Nucleotide Excision Repair in Human Cells†

The human nucleotide excision repair system targets a wide variety of DNA adducts for removal from DNA, including photoproducts induced by UV wavelengths of sunlight. A key feature of nucleotide excision repair is its dual incision mechanism, which results in generation of a small, damage-containing oligonucleotide approximately 24 to 32 nt in length. Detection of these excised oligonucleotides...

متن کامل

Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene.

Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon, is the major cause of lung cancer. BaP forms covalent DNA adducts after metabolic activation and induces mutations. We have developed a method for capturing oligonucleotides carrying bulky base adducts, including UV-induced cyclobutane pyrimidine dimers (CPDs) and BaP diol epoxide-deoxyguanosine (BPDE-dG), which are removed from the genom...

متن کامل

The limited strand-separating activity of the UvrAB protein complex and its role in the recognition of DNA damage.

The recognition by Escherichia coli Uvr nucleotide excision repair proteins of a variety of lesions with diverse chemical structures and the presence of helicase activity in the UvrAB complex which can displace short oligonucleotides annealed to single-stranded DNA led to a model in which this activity moves UvrAB along undamaged DNA to damaged sites where the lesion blocks further translocatio...

متن کامل

Molecular Mechanism of Global Genome Nucleotide Excision Repair

Nucleotide excision repair (NER) is a multistep process that recognizes and eliminates a wide spectrum of damage causing significant distortions in the DNA structure, such as UV-induced damage and bulky chemical adducts. The consequences of defective NER are apparent in the clinical symptoms of individuals affected by three disorders associated with reduced NER capacities: xeroderma pigmentosum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 27  شماره 

صفحات  -

تاریخ انتشار 2012