Red/Far Red Light Controls Arbuscular Mycorrhizal Colonization via Jasmonic Acid and Strigolactone Signaling.
نویسندگان
چکیده
Establishment of a nitrogen-fixing symbiosis between legumes and rhizobia not only requires sufficient photosynthate, but also the sensing of the ratio of red to far red (R/FR) light. Here, we show that R/FR light sensing also positively influences the arbuscular mycorrhizal (AM) symbiosis of a legume and a non-legume through jasmonic acid (JA) and strigolactone (SL) signaling. The level of AM colonization in high R/FR light-grown tomato and Lotus japonicus significantly increased compared with that determined for low R/FR light-grown plants. Transcripts for JA-related genes were also elevated under high R/FR conditions. The root exudates derived from high R/FR light-grown plants contained more (+)-5-deoxystrigol, an AM-fungal hyphal branching inducer, than those from low R/FR light-grown plants. In summary, high R/FR light changes not only the levels of JA and SL synthesis, but also the composition of plant root exudates released into the rhizosphere, in this way augmenting the AM symbiosis.
منابع مشابه
Strigolactones seem not to be involved in the nonsusceptibilty of arbuscular mycorrhizal (AM) nonhost plants to AM fungi
Although most land plants are hosts for arbuscular mycorrhizal fungi (AMF), a small number of plant families are arbuscular mycorrhizal (AM) nonhosts. There are indications that strigolactone levels in root exudates of AM nonhost plants are lower than in AM host plants, and it has been shown that in the strigolactone-deficient rms1 mutant (ccd8) of the AM host plant pea, the AMF colonization of...
متن کاملFAR-RED INSENSITIVE 219/JAR1 Contributes to Shade Avoidance Responses of Arabidopsis Seedlings by Modulating Key Shade Signaling Components
To receive an ample amount of light, plants use elongation growth in response to vegetation shade. The combined interaction of light and hormones, including jasmonic acid (JA) signaling controls this elongation. However, the detailed molecular mechanisms underlying the response are still emerging. FAR-RED INSENSITIVE 219/JASMONATE RESISTANCE 1 (FIN219/JAR1), a cytoplasmic localized JA-conjugati...
متن کاملA basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth.
The crosstalk of light signaling pathways with other signaling cascades has just started to be revealed. Here, we report the identification and functional characterization of a Z-box binding factor (ZBF1) in light signaling pathways. Arabidopsis thaliana ZBF1 encodes AtMYC2/JIN1, a basic helix-loop-helix transcription factor, which has recently been shown to be involved in abscisic acid (ABA), ...
متن کاملAltered pattern of arbuscular mycorrhizal formation in tomato ethylene mutants.
Although no specific role has been demonstrated for ethylene during Arbuscular Mycorrhizal (AM) symbiosis, recent results suggest its participation in the regulation of the AM. Analysis of arbuscular mycorrhizal colonization in the abscisic acid (ABA)-deficient tomato sitiens mutant has shown that ABA deficiency induced ethylene production. It has also been suggested that one of the mechanisms ...
متن کاملInfluence of arbuscular mycorrhizal inoculation and humic acid application on growth and yield of Roselle (Hibiscus sabdariffa L.) and its mycorrhizal colonization index under deficit irrigation
In this study effect of irrigation managements including irrigation after 100 and 200 mm pan evaporation as normal and deficit irrigation respectively was investigated in Roselle plants. Effects of humic acid (including 0 and 4 kg ha-1) and mycorrhizal inoculants (including Glomus versiforme (GV) and Rhizophagus irregularis (RI)) were also studied on growth, yield and mycorrhizal symbiosis inde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 56 11 شماره
صفحات -
تاریخ انتشار 2015