Superstatistical generalization of the work fluctuation theorem
نویسنده
چکیده
We derive a generalized version of the work fluctuation theorem for nonequilibrium systems with spatio-temporal temperature fluctuations. For χ2-distributed inverse temperature we obtain a generalized fluctuation theorem based on q-exponentials, whereas for other temperature distributions more complicated formulae arise. Since q-exponentials have a power law decay, the decay rate in this generalized fluctuation theorem is much slower than the conventional exponential decay. This implies that work fluctuations can be of relevance for the design of micro or nano structures, since the work done on the system is relatively much larger than in the conventional fluctuation theorem.
منابع مشابه
Generalization of the Beck-Cohen superstatistics.
Generalized superstatistics, i.e., a "statistics of superstatistics," is proposed. A generalized superstatistical system comprises a set of superstatistical subsystems and represents a generalized hyperensemble. There exists a random control parameter that determines both the density of energy states and the distribution of the intensive parameter for each superstatistical subsystem, thereby fo...
متن کاملNonequilibrium detailed fluctuation theorem for repeated discrete feedback.
We extend the framework of forward and reverse processes commonly utilized in the derivation and analysis of the nonequilibrium work relations to thermodynamic processes with repeated discrete feedback. Within this framework, we derive a generalization of the detailed fluctuation theorem, which is modified by the addition of a term that quantifies the change in uncertainty about the microscopic...
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$
In this paper, using a generalized Dunkl translation operator, we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$, where $alpha>-frac{1}{2}$.
متن کاملGeneralization of Titchmarsh's Theorem for the Dunkl Transform
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
متن کاملSuperstatistical random-matrix-theory approach to transition intensities in mixed systems.
We study the fluctuation properties of transition intensities applying a recently proposed generalization of the random matrix theory, which is based on Beck and Cohen's superstatistics. We obtain an analytic expression for the distribution of the reduced transition probabilities that applies to systems undergoing a transition out of chaos. The obtained distribution fits the results of a previo...
متن کامل