Retrieval of Optimal Subspace Clusters Set for an Effective Similarity Search in a High-Dimensional Spaces

نویسنده

  • Ivan Sudos
چکیده

High dimensional data is often analysed resorting to its distribution properties in subspaces. Subspace clustering is a powerfull method for elicication of high dimensional data features. The result of subspace clustering can be an essential base for building indexing structures and further data search. However, a high number of subspaces and data instances can conceal a high number of subspace clusters some of which are difficult to analyse within search algorithm. This paper presents a model of generic indexing approach based on detected subspace clusters and the way to find an optimal set of clusters to have an acceptable tradeoff between search speed and relevance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mutual Subspace Clustering Algorithm for High Dimensional Datasets

Generation of consistent clusters is always an interesting research issue in the field of knowledge and data engineering. In real applications, different similarity measures and different clustering techniques may be adopted in different clustering spaces. In such a case, it is very difficult or even impossible to define an appropriate similarity measure and clustering criteria in the union spa...

متن کامل

DAHC-tree: An Effective Index for Approximate Search in High-Dimensional Metric Spaces

Similarity search in high-dimensional metric spaces is a key operation in many applications, such as multimedia databases, image retrieval, object recognition, and others. The high dimensionality of the data requires special index structures to facilitate the search. A problem regarding the creation of suitable index structures for highdimensional data is the relationship between the geometry o...

متن کامل

یک روش مبتنی بر خوشه‌بندی سلسله‌مراتبی تقسیم‌کننده جهت شاخص‌گذاری اطلاعات تصویری

It is conventional to use multi-dimensional indexing structures to accelerate search operations in content-based image retrieval systems. Many efforts have been done in order to develop multi-dimensional indexing structures so far. In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their effici...

متن کامل

Similarity Search in Arbitrary Subspaces Under Lp-Norm

Similarity search has been widely used in many applications such as information retrieval, image data analysis, and time-series matching. Specifically, a similarity query retrieves all data objects in a data set that are similar to a given query object. Previous work on similarity search usually consider the search problem in the full space. In this paper, however, we propose a novel problem, s...

متن کامل

Subspace Nearest Neighbor Search - Problem Statement, Approaches, and Discussion - Position Paper

Computing the similarity between objects is a central task for many applications in the field of information retrieval and data mining. For finding k-nearest neighbors, typically a ranking is computed based on a predetermined set of data dimensions and a distance function, constant over all possible queries. However, many high-dimensional feature spaces contain a large number of dimensions, man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012