One of the Nine Doublet Microtubules of Eukaryotic Flagella Exhibits Unique and Partially Conserved Structures
نویسندگان
چکیده
The axonemal core of motile cilia and flagella consists of nine doublet microtubules surrounding two central single microtubules. Attached to the doublets are thousands of dynein motors that produce sliding between neighboring doublets, which in turn causes flagellar bending. Although many structural features of the axoneme have been described, structures that are unique to specific doublets remain largely uncharacterized. These doublet-specific structures introduce asymmetry into the axoneme and are likely important for the spatial control of local microtubule sliding. Here, we used cryo-electron tomography and doublet-specific averaging to determine the 3D structures of individual doublets in the flagella of two evolutionarily distant organisms, the protist Chlamydomonas and the sea urchin Strongylocentrotus. We demonstrate that, in both organisms, one of the nine doublets exhibits unique structural features. Some of these features are highly conserved, such as the inter-doublet link i-SUB5-6, which connects this doublet to its neighbor with a periodicity of 96 nm. We also show that the previously described inter-doublet links attached to this doublet, the o-SUB5-6 in Strongylocentrotus and the proximal 1-2 bridge in Chlamydomonas, are likely not homologous features. The presence of inter-doublet links and reduction of dynein arms indicate that inter-doublet sliding of this unique doublet against its neighbor is limited, providing a rigid plane perpendicular to the flagellar bending plane. These doublet-specific features and the non-sliding nature of these connected doublets suggest a structural basis for the asymmetric distribution of dynein activity and inter-doublet sliding, resulting in quasi-planar waveforms typical of 9+2 cilia and flagella.
منابع مشابه
FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas
The axoneme-the conserved core of eukaryotic cilia and flagella-contains highly specialized doublet microtubules (DMTs). A long-standing question is what protein(s) compose the junctions between two tubules in DMT. Here we identify a highly conserved flagellar-associated protein (FAP), FAP20, as an inner junction (IJ) component. The flagella of Chlamydomonas FAP20 mutants have normal length but...
متن کاملAtp-induced Sliding of Microtubules in Bull Sperm Flagella
ATP-induced sliding of doublet microtubules has been recently demonstrated with axonemes of sea urchin sperm flagella which had been briefly digested with trypsin (13) . The specific chemical conditions in which such sliding occurs are the same as those required for the reactivation of beating in demembranated sea urchin sperm cells (4) . The conclusion from these observations, that the bending...
متن کاملThe conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella.
Eukaryotic flagella and cilia can exhibit planar and non-planar beating, and the mechanism controlling these beating patterns is not well understood. Chlamydomonas reinhardtii flagella beat in approximately the same plane with either an asymmetric ciliary-type or symmetric flagellar-type waveform. Each B-tubule of the number 1, 5 and 6 doublets of the flagellar axoneme possesses a beak-like str...
متن کاملFunctional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella.
Cilia and flagella are highly conserved, complex organelles involved in a variety of important functions. Flagella are required for motility of several human pathogens and ciliary defects lead to a variety of fatal and debilitating human diseases. Many of the major structural components of cilia and flagella are known, but little is known about regulation of flagellar beat. Trypanosoma brucei, ...
متن کاملAxoneme β-Tubulin Sequence Determines Attachment of Outer Dynein Arms
Axonemes of motile eukaryotic cilia and flagella have a conserved structure of nine doublet microtubules surrounding a central pair of microtubules. Outer and inner dynein arms on the doublets mediate axoneme motility [1]. Outer dynein arms (ODAs) attach to the doublets at specific interfaces [2-5]. However, the molecular contacts of ODA-associated proteins with tubulins of the doublet microtub...
متن کامل