The Induced Subgraph Order on Unlabelled Graphs
نویسنده
چکیده
A differential poset is a partially ordered set with raising and lowering operators U and D which satisfy the commutation relation DU−UD = rI for some constant r. This notion may be generalized to deal with the case in which there exist sequences of constants {qn}n≥0 and {rn}n≥0 such that for any poset element x of rank n, DU(x) = qnUD(x)+rnx. Here, we introduce natural raising and lowering operators such that the set of unlabelled graphs, ordered by G ≤ H if and only if G is isomorphic to an induced subgraph of H, is a generalized differential poset with qn = 2 and rn = 2 . This allows one to apply a number of enumerative results regarding walk enumeration to the poset of induced subgraphs.
منابع مشابه
On the domination polynomials of non P4-free graphs
A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملTotal Roman domination subdivision number in graphs
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
متن کامل21 st British Combinatorial Conference University of Reading 9 th - 13 th July 2007
A hereditary property of graphs is a collection of (isomorphism classes of) graphs which is closed under taking induced graphs, and contains arbitrarily large structures. Given a family F of graphs, the family P(F) of graphs containing no member of F as an induced subgraph is a hereditary property, and every hereditary property of graphs arises in this way. A hereditary property of other combin...
متن کاملLarge Cliques in C4-Free Graphs
A graph is called C4-free if it contains no cycle of length four as an induced subgraph. We prove that if a C4-free graph has n vertices and at least c1n 2 edges then it has a complete subgraph of c2n vertices, where c2 depends only on c1. We also give estimates on c2 and show that a similar result does not hold for H-free graphs—unless H is an induced subgraph of C4. The best value of c2 is de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 13 شماره
صفحات -
تاریخ انتشار 2006