The Induced Subgraph Order on Unlabelled Graphs

نویسنده

  • Craig A. Sloss
چکیده

A differential poset is a partially ordered set with raising and lowering operators U and D which satisfy the commutation relation DU−UD = rI for some constant r. This notion may be generalized to deal with the case in which there exist sequences of constants {qn}n≥0 and {rn}n≥0 such that for any poset element x of rank n, DU(x) = qnUD(x)+rnx. Here, we introduce natural raising and lowering operators such that the set of unlabelled graphs, ordered by G ≤ H if and only if G is isomorphic to an induced subgraph of H, is a generalized differential poset with qn = 2 and rn = 2 . This allows one to apply a number of enumerative results regarding walk enumeration to the poset of induced subgraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the domination polynomials of non P4-free graphs

A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

Total Roman domination subdivision number in graphs

A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...

متن کامل

21 st British Combinatorial Conference University of Reading 9 th - 13 th July 2007

A hereditary property of graphs is a collection of (isomorphism classes of) graphs which is closed under taking induced graphs, and contains arbitrarily large structures. Given a family F of graphs, the family P(F) of graphs containing no member of F as an induced subgraph is a hereditary property, and every hereditary property of graphs arises in this way. A hereditary property of other combin...

متن کامل

Large Cliques in C4-Free Graphs

A graph is called C4-free if it contains no cycle of length four as an induced subgraph. We prove that if a C4-free graph has n vertices and at least c1n 2 edges then it has a complete subgraph of c2n vertices, where c2 depends only on c1. We also give estimates on c2 and show that a similar result does not hold for H-free graphs—unless H is an induced subgraph of C4. The best value of c2 is de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2006