On the Dirac-Klein-Gordon Equations in Three Space Dimensions

نویسندگان

  • Yung-fu Fang
  • Manoussos Grillakis
  • M. GRILLAKIS
چکیده

We establish a local existence result for Dirac-Klein-Gordon equations in three space dimensions, employing a null form estimate and a fixed point argument. 0. Introduction and Main Results. In the present work, we like to study the Cauchy problem for the Dirac-Klein-Gordon equations. The unknown quantities are a spinor field ψ : R × R 7→ C and a scalar field φ : R × R 7→ R. The evolution equations for the fields are given below, Dψ = φψ; (t, x) ∈ R× R (0.1a) ¤φ = ψψ; (0.1b) ψ(0, x) := ψ0(x), φ(0, x) = φ0(x), φ,t(0, x) = φ1(x), (0.1c) where D is the Dirac operator, D := −iγ∂μ, μ = 0, 1, 2, 3, and γ are the Dirac matrices, the wave operator ¤ = −∂tt + ∆, and ψ = ψ†γ0, and † is the complex conjugate transpose. The matrices can be written as follows. First let us define the 2× 2 matrices σ1, σ2, and σ3, σ1 := [ 0 1 1 0 ] , σ2 := [ 0 −i i 0 ] , σ3 := [ 1 0 0 −1 ] . (0.2a) The matrices γ are defined via γ = [ I2 0 0 −I2 ] , γ = [ 0 σj −σj 0 ] . (0.2b) 1 2 Y.F. FANG & M. GRILLAKIS The purpose of this work is to demonstrate a variant null form estimate, by employing the solution representations in Fourier transform of the DKG equations. Such estimate can improve the existence result, see [Bo]. We will take advantage of the null form structure depicted in the nonlinear term ψψ, see [KM] and [Bo]. For the DKG system, there are many conserved quantities which are not positive definite, such as the energy, the momenta, and the angular momenta. However there is a known positive conserved quantity which is the law of conservation of charge, ∫ |ψ(t)|2 dx = constant, see [GS] In ’74, Chadam and Glassey showed that the Cauchy problem for the DKG equations has a unique local solution for ψ0 ∈ H, φ0 ∈ H, φ1 ∈ H, and global solution for a particular class of initial data, see [CG]. In ’81, Choquet-Bruhat proved the global existence result for the (massless) DKG equations by assuming small data, see [CB]. In ’88, Bachelot gave the global existence for DKG system with small data, see [Ba]. In ’99, Bournaveas derived a local existence for the DKG equations, based on a null form estimate, if ψ0 ∈ H 2 , φ0 ∈ H, φ1 ∈ L, see [Bo]. The outline of this paper is as follows. First we derive some solutions representations in Fourier transform. Next we prove some a priori estimates of solutions for Dirac equation and for wave equation. Then we show a local existence result for (0.1), employing the null form estimate together with some other estimates, and a fixed point argument. Finally we show the key estimate, namely the null form estimate. The main result in this work is as follows. Theorem 0.1. (Local Existence) Let 2 > 0. If the initial data of (0.1) ψ0 ∈ H 14+2(R3), φ0 ∈ H(R), φ1 ∈ L(R), then there is a unique local solution for (0.1). Remarks. 1. The DKG equations follow from the Lagrangian ∫ R3+1 { |∇φ|2 − |φt| − ψDψ − φψψ } dxdt. (0.3) DIRAC-KLEIN-GORDON EQUATIONS 1+3 D 3 2. The Dirac-Klein-Gordon system must be { Dψ = φψ; ¤φ + mφ = ψψ, (0.4) and the proof works for this system too. 3. Let I be the 4×4 identity matrix, D̂ = γτ +γξj , and ¤̂ = τ2−|ξ|2, thus we have D̂2 = ¤̂I. 4. ψψ = ψ†γ0ψ = |ψ1| + |ψ2| − |ψ3| − |ψ4|, where ψj are the component functions of the vector function ψ, which take values in C. 1. Solution Representation. In what follows, we denote by (t, x) the time-space variables and by (τ, ξ) the dual variables with respect to the Fourier transform of a given function. We will use μ = 1 4 + 2, α = 1 4 + δ, and ν = 2 − δ throughout the paper. We will also often skip the constant in the inequalities. For convenience, we denote the multipliers by Ê(τ, ξ) = |τ |+ |ξ|+ 1, (1.1a) Ŝ(τ, ξ) = ∣∣|τ | − |ξ| ∣∣ + 1, (1.1b) Ŵ (τ, ξ) = τ − |ξ|2, (1.1c) D̂(τ, ξ) = γτ + γξj , j = 1, 2, 3, (1.1d) M̂(ξ) = |ξ|+ 1. (1.1e) Notice that Ŵ and D̂ are the symbols of the wave and Dirac operators respectively. Also there is a summation over the upper and lower indeices. Consider the Dirac equation, { Dψ = G, (t, x) ∈ R × R, ψ(0) = ψ0. (1.2) First by taking the Fourier transform on (1.2) over the space variable and solving the resulting ODE, we can formally write down the solution 4 Y.F. FANG & M. GRILLAKIS as follows. ψ̃(t, ξ) = eit|ξ| 2|ξ| D̂(|ξ|, ξ)γ ψ̂0(ξ) + e−it|ξ| 2|ξ| D̂(|ξ|,−ξ)γ ψ̂0(ξ)+ ∫ t 0 ei(t−s)|ξ| 2|ξ| D̂(|ξ|, ξ)iG̃(s, ξ) ds + ∫ t 0 e−i(t−s)|ξ| 2|ξ| D̂(|ξ|,−ξ)iG̃(s, ξ) ds. (1.3) Rewriting the inhomogeneous terms in (1.3) gives ψ̃(t, ξ) = [eit|ξ| 2|ξ| D̂(|ξ|, ξ) + e−it|ξ| 2|ξ| D̂(|ξ|,−ξ) ] γψ̂0(ξ)+ ∫ [ e − eit|ξ| 2|ξ|(τ − |ξ|)D̂(|ξ|, ξ) + e − e−it|ξ| 2|ξ|(τ + |ξ|) D̂(|ξ|,−ξ) ] Ĝ(τ, ξ)dτ. (1.4) Now we split the function Ĝ into several parts in the following manner. Consider â(τ) a cut-off function equals 1 if |τ | ≤ 1 2 and equals 0 if |τ | ≥ 1, and denote by h(τ) the Heaviside function. For simplicity, let us write Ĝ±(τ, ξ) := h(±τ)â(τ ∓ |ξ|)Ĝ(τ, ξ), (1.5a) Ĝf (τ, ξ) := Ĝ(τ, ξ)− ( Ĝ+(τ, ξ) + Ĝ−(τ, ξ) ) , (1.5b) D̂± := D̂(|ξ|,±ξ). (1.5c) Notice that Ĝ± are supported in the regions {(τ, ξ) : ±τ > 0, |τ∓|ξ|| ≤ 1} respectively. Using the decomposition of the forcing term Ĝ = Ĝf +Ĝ+ + Ĝ−, the inhomogeneous term in (1.4) can be written as ∫ [ e − eit|ξ| 2|ξ|(τ − |ξ|)D̂(|ξ|, ξ) + e − e−it|ξ| 2|ξ|(τ + |ξ|) D̂(|ξ|,−ξ) ] Ĝf (τ, ξ)dτ = ∫ e D̂(τ, ξ) τ2 − |ξ|2 Ĝf dτ − e it|ξ| D̂+ 2|ξ| ∫ Ĝf τ − |ξ|dτ− e−it|ξ| D̂− 2|ξ| ∫ Ĝf τ + |ξ| (1.6a) ∫ e − eit|ξ| 2|ξ|(τ − |ξ|)++ + Ĝ−)dτ = eit|ξ| D̂+ 2|ξ| ∫ eit(τ−|ξ|) − 1 τ − |ξ| (Ĝ+ + â6(τ)Ĝ−)dτ+ ∫ e (1− â6(τ))D̂+Ĝ− 2|ξ|(τ − |ξ|) dτ − e it|ξ| D̂+ 2|ξ| ∫ (1− â6(τ))Ĝ− τ − |ξ| dτ, (1.6b) DIRAC-KLEIN-GORDON EQUATIONS 1+3 D 5 where â6(τ) = â( τ6 ) and â is the cut-off function defined previously. ∫ e − e−it|ξ| 2|ξ|(τ + |ξ|) D̂−(Ĝ+ + Ĝ−)dτ = e−it|ξ| D̂− 2|ξ| ∫ eit(τ+|ξ|) − 1 τ + |ξ| (â6(τ)Ĝ+ + Ĝ−)dτ+ ∫ e (1− â6(τ))D̂−Ĝ+ 2|ξ|(τ + |ξ|) dτ − e −it|ξ| D̂− 2|ξ| ∫ (1− â6(τ))Ĝ+ τ + |ξ| dτ. (1.6c) Recall the power expansion eit(τ±|ξ|) − 1 = ∞ ∑ k=1 1 k! (it)(τ ± |ξ|)k. (1.7) Combining (1.4)-(1.7), we can give a formula for ψ̂, namely

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Existence for Coupled Systems of Nonlinear Wave and Klein-Gordon Equations in Three Space Dimensions

We consider the Cauchy problem for coupled systems of wave and Klein-Gordon equations with quadratic nonlinearity in three space dimensions. We show global existence of small amplitude solutions under certain condition including the null condition on self-interactions between wave equations. Our condition is much weaker than the strong null condition introduced by Georgiev for this kind of coup...

متن کامل

Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions

In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...

متن کامل

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions

We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum double of the Lorentz group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive particles with spin 0, 12 and 1 in the deformed theory. We discuss ways of obtaining non-commutative versions of relativistic wave equations like the Klein–Gordon, Dirac ...

متن کامل

Global solutions for the Dirac-Klein-Gordon system in two space dimensions

The Cauchy problem for the classical Dirac-Klein-Gordon system in two space dimensions is globally well-posed for L Schrödinger data and wave data in H 1 2 ×H − 1 2 . In the case of smooth data there exists a global smooth (classical) solution. The proof uses function spaces of Bourgain type based on Besov spaces – previously applied by Colliander, Kenig and Staffilani for generalized Benjamin-...

متن کامل

بررسی نوسانگرهای کلاین-گوردن و دیراک در فضای ناجابه‌جایی تحت میدان مغناطیسی ثابت

 In this paper the Klein-Gordon and the Dirac Oscillators in a non-commutative space and in a constant magnetic field are investigated. It is shown that for a specific value of the magnetic field, one may map these oscillators from a non-commutative space to a commutative space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005