Regularized learning in Banach spaces as an optimization problem: representer theorems
نویسندگان
چکیده
We view regularized learning of a function in a Banach space from its finite samples as an optimization problem. Within the framework of reproducing kernel Banach spaces, we prove the representer theorem for the minimizer of regularized learning schemes with a general loss function and a nondecreasing regularizer. When the loss function and the regularizer are differentiable, a characterization equation for the minimizer is also established.
منابع مشابه
ar X iv : 1 11 1 . 10 37 v 2 [ m at h . FA ] 1 7 Fe b 20 12 Vector - valued Reproducing Kernel Banach Spaces with Applications to Multi - task Learning ∗
Motivated by multi-task machine learning with Banach spaces, we propose the notion of vectorvalued reproducing kernel Banach spaces (RKBS). Basic properties of the spaces and the associated reproducing kernels are investigated. We also present feature map constructions and several concrete examples of vector-valued RKBS. The theory is then applied to multi-task machine learning. Especially, the...
متن کاملReproducing Kernel Banach Spaces with the ℓ1 Norm II: Error Analysis for Regularized Least Square Regression
A typical approach in estimating the learning rate of a regularized learning scheme is to bound the approximation error by the sum of the sampling error, the hypothesis error and the regularization error. Using a reproducing kernel space that satisfies the linear representer theorem brings the advantage of discarding the hypothesis error from the sum automatically. Following this direction, we ...
متن کاملReproducing Kernel Banach Spaces with the l1 Norm
Targeting at sparse learning, we construct Banach spaces B of functions on an input space X with the following properties: (1) B possesses an l norm in the sense that B is isometrically isomorphic to the Banach space of integrable functions on X with respect to the counting measure; (2) point evaluations are continuous linear functionals on B and are representable through a bilinear form with a...
متن کاملVector-valued reproducing kernel Banach spaces with applications to multi-task learning
Motivated by multi-task machine learning with Banach spaces, we propose the notion of vector-valued reproducing kernel Banach spaces (RKBSs). Basic properties of the spaces and the associated reproducing kernels are investigated. We also present feature map constructions and several concrete examples of vector-valued RKBSs. The theory is then applied to multi-task machine learning. Especially, ...
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 54 شماره
صفحات -
تاریخ انتشار 2012