Exponential Estimates and Stabilization of Discrete-Time Singular Time-Delay Systems Subject to Actuator Saturation

نویسندگان

  • Jinxing Lin
  • Recai Kilic
چکیده

This paper is concerned with exponential estimates and stabilization of a class of discrete-time singular systems with time-varying state delays and saturating actuators. By constructing a decay-rate-dependent Lyapunov-Krasovskii function and utilizing the slow-fast decomposition technique, an exponential admissibility condition, which not only guarantees the regularity, causality, and exponential stability of the unforced system but also gives the corresponding estimates of decay rate and decay coefficient, is derived in terms of linear matrix inequalities LMIs . Under the proposed condition, the exponential stabilization problem of discrete-time singular time-delay systems subject actuator saturation is solved by designing a stabilizing state feedback controller and determining an associated set of safe initial conditions, for which the local exponential stability of the saturated closed-loop system is guaranteed. Two numerical examples are provided to illustrate the effectiveness of the proposed results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State feedback stabilization of time delay linear singular systems subject to actuator saturation

This paper investigates the problem of stabilization of time delay linear singular systems subject to actuator saturation. A polytopic approach is used to describe the saturation behavior. By using an augmented Lyaponuv-Krasovskii functional and adopting the delay partitioning technique, less conservative sufficient conditions are established to ensure the closed loop system to be locally admis...

متن کامل

Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model

This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...

متن کامل

New Approach to Exponential Stability Analysis and Stabilization for Delayed T-S Fuzzy Markovian Jump Systems

This paper is concerned with delay-dependent exponential stability analysis and stabilization for continuous-time T-S fuzzy Markovian jump systems with mode-dependent time-varying delay. By constructing a novel Lyapunov-Krasovskii functional and utilizing some advanced techniques, less conservative conditions are presented to guarantee the closed-loop system is mean-square exponentially stable....

متن کامل

A new switching strategy for exponential stabilization of uncertain discrete-time switched linear systems in guaranteed cost control problem

Uncertain switched linear systems are known as an important class of control systems. Performance of these systems is affected by uncertainties and its stabilization is a main concern of recent studies. Existing work on stabilization of these systems only provides asymptotical stabilization via designing switching strategy and state-feedback controller. In this paper, a new switching strate...

متن کامل

Stabilization of Networked Control Systems with Variable Delays and Saturating Inputs

In this paper, improved conditions for the synthesis of static state-feedback controller are derived to stabilize networked control systems (NCSs) subject to actuator saturation. Both of the data packet latency and dropout which deteriorate the performance of the closed-loop system are considered in the NCS model via variable delays. Two different techniques are employed to incorporate actuator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014