Bioaffinity sensing using biologically functionalized conducting-polymer nanowire.
نویسندگان
چکیده
A simple, one-step method for fabricating single biologically functionalized conducting-polymer (polypyrrole) nanowire on prepatterned electrodes and its application to biosensing was demonstrated. The biologically functionalized polypyrrole was formed by the electropolymerization of an aqueous solution of pyrrole monomer and the model biomolecule, avidin- or streptavidin-conjugated ZnSe/CdSe quantum dots, within 100 or 200 nm wide by 3 mum long channels between gold electrodes on prefabricated silicon substrate. When challenged with biotin-DNA, the avidin- and streptavidin-polypyrrole nanowires generated a rapid change in resistance to as low as 1 nM, demonstrating the utility of the biomolecule-functionalized nanowire as biosensor. The method offers advantages of direct incorporation of functional biological molecules into the conducting-polymer nanowire during its synthesis, site-specific positioning, built-in electrical contacts, and scalability to high-density nanoarrays over the reported silicon nanowire and carbon nanotube biosensors.
منابع مشابه
Polymer Single-Nanowire Optical Sensor
Although nanowires have attracted much interest in sensing applications, polymer single nanowires for optical sensing, which promises greater versatility and superior performances, remains unexplored. To date, most of these single nanowire devices have been focused on the electrical conductance change when exposed to the species. However, optical detection are highly desired owing to its advant...
متن کاملPolymer Single-Nanowire Optical Sensor
Although nanowires have attracted much interest in sensing applications, polymer single nanowires for optical sensing, which promises greater versatility and superior performances, remains unexplored. To date, most of these single nanowire devices have been focused on the electrical conductance change when exposed to the species. However, optical detection are highly desired owing to its advant...
متن کاملSilica nanowire arrays for diffraction-based bioaffinity sensing.
Arrays of electrodeposited silica nanowires (SiO2 NWs) have been fabricated over large areas (cm(2)) on fluoropolymer thin films attached to glass substrates by a combination of photolithography and electrochemically triggered sol-gel nanoscale deposition. Optical and scanning electron microscopy (SEM) measurements revealed that the SiO2 NW arrays had an average spacing of ten micrometers and a...
متن کاملConducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing
One dimensional polyaniline nanowire is an electrically conducting polymer that can be used as an active layer for sensors whose conductivity change can be used to detect chemical or biological species. In this review, the basic properties of polyaniline nanowires including chemical structures, redox chemistry, and method of synthesis are discussed. A comprehensive literature survey on chemires...
متن کاملEnhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings.
This paper introduces a novel approach to surface bioaffinity sensing based on the adsorption of nanoparticles onto a gold diffraction grating that supports the excitation of planar surface plasmons. A surface enzymatic amplification reaction is also incorporated into the detection scheme to enhance the sensitivity and utility of the nanoparticle-enhanced diffraction grating (NEDG) sensors. As ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 127 2 شماره
صفحات -
تاریخ انتشار 2005