Pycnogenol(®) treatment inhibits bone mineral density loss and trabecular deterioration in ovariectomized rats.
نویسندگان
چکیده
CONTEXT Pycnogenol(®) extracted from French maritime pine bark (Pinus pinaster Ait. subsp. atlantica) is functional for its antioxidant activity. OBJECTIVE To investigate the effects of Pycnogenol(®) on bone mineral density (BMD), trabecular microarchitecture and bone metabolism in ovariectomized (OVX) rats. MATERIALS AND METHODS Thirty Sprague-Dawley rats were randomized into 3 groups: SHAM group (sham-operated rats), OVX group (OVX rats), and treatment group (OVX rats supplemented with 40 mg/kg Pycnogenol(®) by oral gavage). Serum levels of procollagen type I N-terminal propeptide (PINP), alkaline phosphatase (ALP) and minerals were detected at the end of 9 weeks of gavage. Deoxypyridinoline/creatinine (DPYD/Cr) and N-telopeptide of type I collagen/creatinine (NTX/Cr) rate in urine were also calculated. Left femora were collected for BMD determination, and the right distal femora were made into undecalcified specimens for histomorphometry analysis. RESULTS At the end of study, PINP level, DPYD/Cr and NTX/Cr rate were significantly increased, and femoral BMD were dramatically decreased in OVX group compared with SHAM group (P < 0.01) while serum minerals and ALP concentrations showed no significant difference. The treatment group had dramatically decreased biomarkers and increased BMD than OVX group (P < 0.01). Histomorphometry analysis showed worse bone microarchitecture parameters in the OVX group compared with the SHAM group which were significantly improved in the treatment group compared with the OVX group (P < 0.01). DISCUSSION AND CONCLUSION Pycnogenol(®) (40 mg/kg) can inhibit aggravated bone resorption, prevent BMD loss, and restore the impaired trabecular microarchitecture in OVX rats after 9-week-intervention.
منابع مشابه
P-181: Protective Role of Vitamin E As An Alternative Treatment for Ovariectomized Osteoporotic Rats
Background: Osteoporosis one of the postmenopausal symptoms is characterized by bone loss. There is a link between excessive reactive oxygen species (ROS) formation, estrogen deficiency due to cessation of ovarian function and bone loss. Free radicals are responsible for causing osteoblast apoptosis and reducing osteoblastogenesis in bone remodeling. Vitamin E is a potent antioxidant with the a...
متن کاملP-236: The Role of Trace Elements in Treatment of Ovariectomized Osteoporotic Rats
Background: Osteoporosis is one of the uncomfortable postmenopausal symptoms. The risk of imbalanced nutrition especially traces elements and vitamins are high during post menopause and may lead to osteoporosis due to reduction of content of mineral bone. The aim of this study was to investigate the potential consequence of Selenium (Se) treatment in ovariectomized rat model with osteoporosis i...
متن کاملPrevention of trabecular bone loss in the mandible of ovariectomized rats.
The effect of therapeutic agents on trabecular bone loss in the mandible was investigated in ovariectomized rats. Eighty-seven Wistar SPF female rats were ovariectomized (OVX) or given a sham operation (Sham), and maintained on a diet containing 0.1% calcium. Four weeks later, groups of OVX rats were treated with estriol (E3), calcitonin (CT), etidronate, or 2-carboxyethylgermanium sesquioxide ...
متن کاملBone Sparing Effect of a Novel Phytoestrogen Diarylheptanoid from Curcuma comosa Roxb. in Ovariectomized Rats
Phytoestrogens have been implicated in the prevention of bone loss in postmenopausal osteoporosis. Recently, an active phytoestrogen from Curcuma comosa Roxb, diarylheptanoid (DPHD), (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol, was found to strongly promote human osteoblast function in vitro. In the present study, we demonstrated the protective effect of DPHD on ovariectomy-induced bone loss (...
متن کاملNecrostatin-1 treatment inhibits osteocyte necroptosis and trabecular deterioration in ovariectomized rats
Estrogen (E2) deficiency has been associated with accelerated osteocyte apoptosis. Our previous study showed necroptosis accelerated the loss of osteocytes in E2 deficiency-induced osteoporosis in rats in addition to apoptosis, but the mechanism involved remains. Necroptosis is a caspase-independent form of programmed cell death. In the necroptosis pathway, receptor interaction proteins 1 and 3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of clinical and experimental medicine
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2015