Cell survival and differentiation with nanocrystalline glass-like carbon using substantia nigra dopaminergic cells derived from transgenic mouse embryos
نویسندگان
چکیده
Regenerative medicine requires, in many cases, physical supports to facilitate appropriate cellular architecture, cell polarization and the improvement of the correct differentiation processes of embryonic stem cells, induced pluripotent cells or adult cells. Because the interest in carbon nanomaterials has grown within the last decade in light of a wide variety of applications, the aim of this study was to test and evaluate the suitability and cytocompatibility of a particular nanometer-thin nanocrystalline glass-like carbon film (NGLC) composed of curved graphene flakes joined by an amorphous carbon matrix. This material is a disordered structure with high transparency and electrical conductivity. For this purpose, we used a cell line (SN4741) from substantia nigra dopaminergic cells derived from transgenic mouse embryos. Cells were cultured either in a powder of increasing concentrations of NGLC microflakes (82±37μm) in the medium or on top of nanometer-thin films bathed in the same culture medium. The metabolism activity of SN4741 cells in presence of NGLC was assessed using methylthiazolyldiphenyl-tetrazolium (MTT) and apoptosis/necrosis flow cytometry assay respectively. Growth and proliferation as well as senescence were demonstrated by western blot (WB) of proliferating cell nuclear antigen (PCNA), monoclonal phosphorylate Histone 3 (serine 10) (PH3) and SMP30 marker. Specific dopaminergic differentiation was confirmed by the WB analysis of tyrosine hydroxylase (TH). Cell maturation and neural capability were characterized using specific markers (SYP: synaptophysin and GIRK2: G-protein-regulated inward-rectifier potassium channel 2 protein) via immunofluorescence and coexistence measurements. The results demonstrated cell positive biocompatibility with different concentrations of NGLC. The cells underwent a process of adaptation of SN4741 cells to NGLC where their metabolism decreases. This process is related to a decrease of PH3 expression and significant increase SMP30 related to senescence processes. After 7 days, the cells increased the expression of TH and PCNA that is related to processes of DNA replication. On the other hand, cells cultured on top of the film showed axonal-like alignment, edge orientation, and network-like images after 7 days. Neuronal capability was demonstrated to a certain extent through the analysis of significant coexistence between SYP and GIRK2. Furthermore, we found a direct relationship between the thickness of the films and cell maturation. Although these findings share certain similarities to our previous findings with graphene oxide and its derivatives, this particular nanomaterial possesses the advantages of high conductivity and transparency. In conclusion, NGLC could represent a new platform for biomedical applications, such as for use in neural tissue engineering and biocompatible devices.
منابع مشابه
Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos.
The major pathological lesion of Parkinson's disease (PD) is the selective cell death of dopaminergic (DA) neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to DA cell death underlying the PD process remain elusive, brain-derived neurotrophic factor (BDNF) is thought to exert neuroprotective as well as neurotrophic roles for the s...
متن کاملGeneration of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons.
We have generated embryonic stem (ES) cells and transgenic mice with green fluorescent protein (GFP) inserted into the Pitx3 locus via homologous recombination. In the central nervous system, Pitx3-directed GFP was visualized in dopaminergic (DA) neurons in the substantia nigra and ventral tegmental area. Live primary DA neurons can be isolated by fluorescence-activated cell sorting from these ...
متن کاملCinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملDopaminergic Differentiation of Human Embryonic Stem Cells on PA6-Derived Adipocytes.
Human embryonic stem cells (hESCs) are a promising source for cell replacement therapies. Parkinson's disease is one of the candidate diseases for the cell replacement therapy since the motor manifestations of the disease are associated with the loss of dopaminergic neurons in the substantia nigra pars compacta. Stromal cell-derived inducing activity (SDIA) is the most commonly used method for ...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کامل