Characterization of Kaolinite ζ Potential for Interpretation of Wettability Alteration in Diluted Bitumen Emulsion Separation
نویسندگان
چکیده
Initial processing of Athabasca oil sands obtained from the water-based extraction process yields stable water-in-bitumen emulsions.When the bitumen is diluted with naphtha to reduce its viscosity and density, partial separation can be obtained with a suitable demulsifier. However, a “rag layer” forms between the clean oil and free water layers. The partially oil-wet kaolinite in clay solids can retard water-in-oil emulsion coalescence, entrap oil drops, and form aggregates, which results in a rag layer in the middle of the sample. Once formed, this rag layer prevents further coalescence and water separation. We show here that wettability of kaolinite can be characterized via ζ potential measurement and modeling. A simplified Gouy-Stern-Grahame model and an oxide site binding model can be used to correlate the ζ potential of kaolinite in brine with different additives. Sodium silicate has the greatest effect per unit addition on changing the ζ potential of kaolinite and can be used to change thewettability of clay solids. The separation of water in diluted bitumen emulsion can be enhanced by changing the wettability of clay solids using silicate and pH control.
منابع مشابه
Application of Nanoparticles for Chemical Enhanced Oil Recovery
In this paper, the potentials of using particles, especially nanoparticles, in enhanced oil recovery is investigated. The effect of different nanoparticles on wettability alteration, which is an important method to increase oil recovery from oil-wet reservoirs, is reviewed. The effect of different kinds of particles, namely solid inorganic particles, hydrophilic or hydrophobic nanoparticles, an...
متن کاملCrude Oil Interfacial Tension Reduction and Reservoir Wettability Alteration with Graphite or Activated Carbon/Silica Nanohybrid Pickering Emulsions
In this research, two carbon structures silica nanohybrids Pickering emulsions were prepared. Graphite and activated carbon were carbon allotropes with different morphologies of laminar and spherical, respectively. The effect of carbon morphology investigated on the related silica nanohybrids Pickeringemulsions for C-EOR. Therefore, nanohybrids were prepared with graphite and activated carbon t...
متن کاملWettability Alteration of Oil- Wet and Water-Wet of Iranian Heavy Oil Reservoir by CuO Nanoparticles
The petroleum industry requires the best materials to reverse the rock wettability to water-wet state which give significantly improved oil recovery.Nanoparticles are suggested as enhanced oil recovery potential agents to decrease viscosity and alter the wettability of reservoir towards more water-wet. This study provides new insights into CuO nanoparticles effects on wett...
متن کاملKaolinite and Silica Dispersions in Low-Salinity Environments: Impact on a Water-in-Crude Oil Emulsion Stability
This research aims at providing evidence of particle suspension contributions to emulsion stability, which has been cited as a contributing factor in crude oil recovery by low-salinity waterflooding. Kaolinite and silica particle dispersions were characterized as functions of brine salinity. A reference aqueous phase, representing reservoir brine, was used and then diluted with distilled water ...
متن کاملTitle : Thermal Destabilisation of Bitumen - in - Water Emulsions - A Spinning Drop Tensiometry
Nonionic surfactant-stabilised oil-in-water emulsions offer a potentially useful vehicle for transporting heavy crude oils from oilfields to refineries or distribution terminals. Prior to refining, separation of the oil from the emulsion is necessary. Previous studies have suggested that heating the emulsion is sufficient for destabilisation and recovery of the oil. The present work examines th...
متن کامل