Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium.
نویسندگان
چکیده
Calcium-dependent inactivation of NMDA channels was examined on cultured rat hippocampal neurons using whole-cell voltage-clamp and cell-attached single-channel recording. An ATP regeneration solution was included in the patch pipette to retard current "rundown." In normal [Ca2+]o (1-2 mM) and 10 microM glycine, macroscopic currents evoked by 15 sec applications of NMDA (10 microM) inactivated slowly following an initial peak. At -50 mV in cells buffered to [Ca2+]i < 10(-8) M with 10 mM EGTA, the inactivation time constant (tau inact) was approximately 5 sec. Inactivation did not occur at membrane potentials of +40 mV and was absent at [Ca2+]o < or = 0.2 mM, suggesting that inactivation resulted from transmembrane calcium influx. The percentage inactivation and tau inact were dependent on [Ca2+]o. The tau inact was also longer with BAPTA in the whole-cell pipette compared to EGTA, suggesting that tau inact reflects primarily the rate of accumulation of intracellular calcium. Inactivation was incomplete, reaching a steady state level of 40-50% of the peak current. At steady state, block of open NMDA channels with MK-801 ((+)-5-methyl-10,11-dihydro-5H- dibenzo[a,d]cyclohepten-5,10-imine) completely blocked subsequent responses to NMDA, suggesting that "inactivated" channels can reopen at steady state. Inactivation was fully reversible in the presence of ATP but was not blocked by inhibiting phosphatases or proteases. In cell-attached patches, transient increases in [Ca2+]i following cell depolarization also resulted in inactivation of NMDA channels without altering the single-channel conductance. This suggests that Ca(2+)-dependent inactivation occurs in intact cells and can be triggered by calcium entry through nearby voltage-gated calcium channels, although calcium entry through NMDA channels was more effective. We suggest that [Ca2+]i transients induce NMDA channel inactivation by binding to either the channel or a nearby regulatory protein to alter channel gating. This mechanism may play a role in downregulation of postsynaptic calcium entry during sustained synaptic activity.
منابع مشابه
Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کاملOpioid enhancement of calcium oscillations and burst events involving NMDA receptors and L-type calcium channels in cultured hippocampal neurons.
Opioid receptor agonists are known to alter the activity of membrane ionic conductances and receptor-activated channels in CNS neurons and, via these mechanisms, to modulate neuronal excitability and synaptic transmission. In neuronal-like cell lines opioids also have been reported to induce intracellular Ca(2+) signals and to alter Ca(2+) signals evoked by membrane depolarization; these effect...
متن کاملCalcium-dependent inactivation of the monosynaptic NMDA EPSCs in rat hippocampal neurons in culture.
The effects of increased dendritic calcium concentration ([Ca2+]i) induced by single action potentials on monosynaptic glutamatergic excitatory postsynaptic currents (EPSCs) were studied in cultured rat hippocampal neurons. To investigate the respective roles of pre- and postsynaptic elements in the depolarization-induced NMDAR inactivation, we have performed simultaneous paired whole-cell reco...
متن کاملP30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain
Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 2 شماره
صفحات -
تاریخ انتشار 1993