Non-rigid Surface Tracking for Virtual Fitting System

نویسندگان

  • Naoki Shimizu
  • Takumi Yoshida
  • Tomoki Hayashi
  • François de Sorbier
  • Hideo Saito
چکیده

In this paper, we describe a method for overlaying a texture onto a T-shirt, for improving current virtual fitting system. In such systems, users can try on clothes virtually. In order to realize such a system, a depth camera has been used. These depth cameras can capture 3D data in real time and have been used by some industrial virtual cloth fitting systems. However, these systems roughly, or just do not, consider the shape of the clothes that user is wearing. So the appearance of these virtual fitting systems looks unnaturally. For a better fitting, we need to estimate 3D shape of cloth surface, and overlay a texture of the cloth that the user wants to see onto the surface. There are some methods that register a 3D deformable mesh onto captured depth data of a target surface. Although those registration methods are very accurate, most of them require large amount of processing time or either manually-set markers or special rectangles. The main contribution of our method is to overlay a texture onto a texture of T-shirt in real-time without modifying the surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Real-Time Face Tracking System based on Morphable 3D Model Fitting

We demonstrate a real-time face tracking system, which works based on morphable 3D model fitting. The technical details are partly presented in [2]. Given a target user’s individual morphable 3D model in the form of a combination of 3D linear bases, our system is capable of tracking the rigid and non-rigid motion of the target in live video. Furthermore, thanks to the tracking accuracy of our s...

متن کامل

An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...

متن کامل

A Novel Robust Adaptive Trajectory Tracking in Robot Manipulators

In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...

متن کامل

QFT Control of a Two-Link Rigid-Flexible Manipulator

This paper evaluates a new and simple controller design method based on QFT (quantitative feedback theory) for a two-link manipulator whose first link is rigid and the second is flexible. A piezoelectric patch is attached to the surface of the flexible link for vibration suppression of it. This system is modeled as a nonlinear multi-input multi-output (MIMO) control systems whose inputs are two...

متن کامل

Using a Novel Concept of Potential Pixel Energy for Object Tracking

Abstract   In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013