Micromechanical Model for the Orthotropic Elastic Constants of Polyetheretherketone Composites Considering the Orientation Distribution of the Hydroxyapatite Whisker Reinforcements
نویسندگان
چکیده
Hydroxyapatite (HA) whisker reinforced polyetheretherketone (PEEK) composites have been investigated as bioactive materials for load-bearing orthopedic implants with tailored mechanical properties governed by the volume fraction, morphology, and preferred orientation of the HA whisker reinforcements. Therefore, the objective of this study was to establish key structure-property relationships and predictive capabilities for the design of HA whisker reinforced PEEK composites and, more generally, discontinuous short fiber-reinforced composite materials. HA whisker reinforced PEEK composites exhibited anisotropic elastic constants due to a preferred orientation of the HA whiskers induced during compression molding. Experimental measurements for both the preferred orientation of HA whiskers and composite elastic constants were greatest in the flow direction during molding (3-axis, C33), followed by the transverse (2-axis, C22) and pressing (1axis, C11) directions. Moreover, experimental measurements for the elastic anisotropy and degree of preferred orientation in the same specimen plane were correlated. A micromechanical model accounted for the preferred orientation of HA whiskers using two-dimensional implementations of the measured orientation distribution function (ODF) and was able to more accurately predict the orthotropic elastic constants compared to common, idealized assumptions of randomly oriented or perfectly aligned reinforcements. Model predictions using the 3-2 plane ODF, and the average of the 3-1 and 3-2 plane ODFs, were in close agreement with the corresponding measured elastic constants, exhibiting less than 5% average absolute error. Model predictions for C11 using the 3-1 plane ODF were less accurate, with greater than 10% error. This study demonstrated the ability to accurately predict differences in orthotropic elastic constants due to changes in the reinforcement orientation distribution, which will aid in the design of HA whisker reinforced PEEK composites and, more generally, discontinuous short fiberreinforced composites. [DOI: 10.1115/1.4005421]
منابع مشابه
Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone.
Polyetheretherketone (PEEK) was reinforced with 0-50 vol% hydroxyapatite (HA) whiskers using a novel powder processing and compression molding technique which enabled uniform mixing at high whisker content. Texture analysis showed that viscous flow during compression molding produced a preferred orientation of whiskers along the specimen tensile axis. Consequently, the elastic modulus or ultima...
متن کاملMicromechanical model for hydroxyapatite whisker reinforced polymer biocomposites
A micromechanical model was developed to predict the elastic moduli of hydroxyapatite (HA) whisker reinforced polymer biocomposites based upon the elastic properties of each phase and the reinforcement volume fraction, morphology, and preferred orientation. The effects of the HA whisker volume fraction, morphology, and orientation distribution were investigated by comparing model predictions wi...
متن کاملA polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micromechanical Investigation
The application of porous bio-nanocomposites polymer has greatly increased in the treatment of boneabnormalities and bone fracture. Therefore, predicting the mechanical properties of these bio-nanocompositesare very important prior to their fabrication. Investigation of mechanical properties like (elasticmodulus and hardness) is very costly and time-consuming in experimental t...
متن کاملStiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function
One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...
متن کاملNonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کامل