p75 is important for axon growth and schwann cell migration during development.
نویسندگان
چکیده
Mice lacking the low-affinity neurotrophin receptor p75 have multiple peripheral neural deficits. Here we examined the developmental nature of these deficiencies. Peripheral axons in p75 -/- embryos were severely stunted and poorly arborized from embryonic day 11.5 (E11.5) to E14.5. In vitro, neurite outgrowth from the dorsal root ganglia was significantly decreased in the p75 -/- embryos at E12.5, suggesting that stunted axonal growth in the embryo may result in part from defects in neurite elongation. Additionally, Schwann cell marker S100beta immunoreactivity was decreased or absent along the growing axons of the ophthalmic branch from the trigeminal ganglia in p75 -/- embryos. Electron microscopy studies of the axons of the trigeminal ganglion at E13.5 revealed that in the p75 mutant embryo, nerve bundles were highly impaired and that coverage of the growing axons by Schwann cell cytoplasm was substantially reduced. In vitro, Schwann cell migration from the dorsal root ganglia was significantly decreased in the p75 -/- embryos at E12.5, suggesting that the lack of S100beta staining and Schwann cell coverage in the p75 mutant results from a deficit in Schwann cell migration. These results provide evidence that p75 is important in the developing embryo for regulating axon growth and arborization and for Schwann cell migration.
منابع مشابه
Coupling neurotrophins to cell migration through selective guanine nucleotide exchange factor activation.
M yelinating glia provide an insulating sheath around axons that is required for the rapid propagation of axon potentials and normal function of the central and peripheral nervous systems. Myelinated nerve fibers develop in a series of stages. Axons initially grow out largely devoid of glia; they stimulate the generation of immature, premyelinating Schwann cells that migrate along the axon, res...
متن کاملIn vivo analysis of Schwann cell programmed cell death in the embryonic chick: regulation by axons and glial growth factor.
The present study uses the embryonic chick to examine in vivo the mechanisms and regulation of Schwann cell programmed cell death (PCD) in spinal and cranial peripheral nerves. Schwann cells are highly dependent on the presence of axons for survival because the in ovo administration of NMDA, which excitotoxically eliminates motoneurons and their axons by necrosis, results in a significant incre...
متن کاملP75: Expression of GDNF Genes in the Cerebellum of Rat Neonate Born to Mother with Diabetes
Diabetes Mellitus as a common metabolic disorder in women of reproductive age is rising throughout the globe. Diabetes in pregnancy has various adverse outcomes on different organs development including the central nervous system (CNS) and it can cause learning deficits, behavioral problems and motor dysfunctions in the offspring. The cerebellum is a part of brain that coordinates voluntary mov...
متن کاملApoptosis of Rat Adipose-Derived Stem Cells during Transdifferentiation to Schwann-Like Cell
Background: Adipose-derived stem cells (ADSCs) are a population of pluripotent cells used for tissue engineering purposes. The main purpose of the present study was to transdifferentiate the ADSCs to Schwann-like cells and to determine the intensity of apoptosis in ADSCs during the transdifferentiation process. Methods: ADSCs were isolated from the inguinal adipose tissue of adult rats and the ...
متن کاملProliferating immature Schwann cells contribute to nerve regeneration after ischemic peripheral nerve injury.
Schwann cells exhibit a high degree of plasticity in adult peripheral nerves after mechanical injury; they have, therefore, been implicated in promoting nerve regeneration. However, Schwann cell behavior after ischemic injury has not yet been elucidated. To determine how Schwann cell plasticity may contribute to recovery from ischemic neuropathy, we used a rat model in which ischemia was induce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 20 شماره
صفحات -
تاریخ انتشار 2000