Numerical Approximations of Allen-cahn and Cahn-hilliard Equations

نویسندگان

  • JIE SHEN
  • XIAOFENG YANG
چکیده

Stability analyses and error estimates are carried out for a number of commonly used numerical schemes for the Allen-Cahn and Cahn-Hilliard equations. It is shown that all the schemes we considered are either unconditionally energy stable, or conditionally energy stable with reasonable stability conditions in the semi-discretized versions. Error estimates for selected schemes with a spectral-Galerkin approximation are also derived. The stability analyses and error estimates are based on a weak formulation thus the results can be easily extended to other spatial discretizations, such as Galerkin finite element methods, which are based on a weak formulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Application of the Local DiscontinuousGalerkinMethod for the Allen-Cahn/Cahn-Hilliard System

In this paper, we consider the application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. The method in this paper extends the local discontinuous Galerkin method in [10] to the more general application system which is coupled with the Allen-Cahn and Cahn-Hilliard equations. Similar energy stability result as that in [10] is presented. Numerical results for ...

متن کامل

Comparison study of the conservative Allen-Cahn and the Cahn-Hilliard equations

In this paper, a comparison study of conservative Allen–Cahn and Cahn–Hilliard equations is presented. We consider two massconservative Allen–Cahn equations and two Cahn–Hilliard equations with constant and variable mobilities. The equations are discretized using finite difference schemes, and discrete systems of the equations are solved using a nonlinear multigrid method. The generation and mo...

متن کامل

Stabilized Semi-implicit Spectral Deferred Correction Methods for Allen-cahn and Cahn-hilliard Equations

Stabilized semi-implicit spectral defect correction (SSISDC) methods are constructed for the time discretization of Allen-Cahn and Cahn-Hilliard equations. These methods are unconditionally stable, lead to simple linear system to solve at each iteration and can achieve high-order time accuracy with a few iterations in each time step. Ample numerical results are presented to demonstrate the effe...

متن کامل

On the stable discretization of strongly anisotropic phase field models with applications to crystal growth

We introduce unconditionally stable finite element approximations for anisotropic Allen– Cahn and Cahn–Hilliard equations. These equations frequently feature in phase field models that appear in materials science. On introducing the novel fully practical finite element approximations we prove their stability and demonstrate their applicability with some numerical results. We dedicate this artic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010