On the Security of Microaggregation with Individual Ranking: Analytical Attacks
نویسندگان
چکیده
Microaggregation is a statistical disclosure control technique. Raw microdata (i.e. individual records) are grouped into small aggregates prior to publication. With fixed-size groups, each aggregate contains k records to prevent disclosure of individual information. Individual ranking is a usual criterion to reduce multivariate microaggregation to univariate case: the idea is to perform microaggregation independently for each variable in the record. Using distributional assumptions, we show in this paper how to find interval estimates for the original data based on the microaggregated data. Such intervals can be considerably narrower than intervals resulting from subtraction of means, and can be useful to detect lack of security in a microaggregated data set. Analytical arguments given in this paper confirm recent empirical results about the unsafety of individual ranking microaggregation.
منابع مشابه
www.econstor.eu Estimation of a Linear Model under Microaggregation by Individual Ranking
Microaggregation by individual ranking is one of the most commonly applied disclosure control techniques for continuous microdata. The paper studies the effect of microaggregation by individual ranking on the least squares estimation of a multiple linear regression model in continuous variables. It is shown that the naive parameter estimates are asymptotically unbiased. Moreover, the naive leas...
متن کاملEstimation of a Linear Model under Microaggregation by Individual Ranking
Microaggregation by individual ranking is one of the most commonly applied disclosure control techniques for continuous microdata. The paper studies the effect of microaggregation by individual ranking on the least squares estimation of a multiple linear regression model in continuous variables. It is shown that the naive parameter estimates are asymptotically unbiased. Moreover, the naive leas...
متن کاملA novel local search method for microaggregation
In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2k_1 records, such that the sum of the within-group squ...
متن کاملImproved Univariate Microaggregation for Integer Values
Privacy issues during data publishing is an increasing concern of involved entities. The problem is addressed in the field of statistical disclosure control with the aim of producing protected datasets that are also useful for interested end users such as government agencies and research communities. The problem of producing useful protected datasets is addressed in multiple computational priva...
متن کاملSecurity Challenges in Fog Computing in Healthcare
Background and Aim: The Fog Computing is a highly virtualized platform that provides storage, computing and networking services between the Cloud data centers and end devices. Fog computing fits the characteristics of real-time health monitoring systems. In such systems, a large amount of data is acquired from a multitude of bio and environmental sensors. On the other hand, its distribution and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
دوره 10 شماره
صفحات -
تاریخ انتشار 2002