Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein-coupled receptor.
نویسندگان
چکیده
The chemokine receptor CXCR2 is the closest homologue to Kaposi's sarcoma herpesvirus-G protein-coupled receptor (KSHV-GPCR), which is known to be constitutively activated and able to cause oncogenic transformation. Among G protein-coupled receptors, a DRY sequence in the second intracellular loop is highly conserved. However, the KSHV-GPCR shows a VRY sequence instead. In this study, we exchanged Asp138 of the DRY sequence in the CXCR2 with a Val (D138V), the corresponding amino acid in KSHV-GPCR, or with a Gln (D138Q), and investigated the functional consequences of these mutations. In focus formation and soft agar growth assays in NIH 3T3 cells, the D138V mutant exhibited transforming potential similar to the KSHV-GPCR. Surprisingly, the CXCR2 wild type itself showed transforming activity, although not as potently, due to continuous autocrine stimulation, whereas the D138Q mutant formed no foci. In agreement with these results were high levels of inositol phosphate accumulation in the D138V mutant and the KSHV-GPCR, indicating constitutive activity. These data emphasize the importance of the DRY sequence for G protein-coupled signaling of the CXCR2. Either constitutive activation or persistent autocrine stimulation of the CXCR2 causes transformation similar to KSHV-GPCR-transfected cells, probably activating the same signal transduction cascade that can abrogate normal growth control mechanisms.
منابع مشابه
Herpesvirus-G Protein-Coupled Receptor Activity Similar to Kaposi's Sarcoma Signaling of CXCR2 Leads to Transforming Point Mutation Causing Constitutive
متن کامل
Chemokines activate Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture.
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8, a virus that appears to be involved in the pathogenesis of Kaposi's sarcoma and primary effusion lymphomas, encodes a G protein-coupled receptor (KSHV-GPCR) that exhibits constitutive signaling. In this report, we show that two chemokines, interleukin 8 (IL-8) and growth-related protein-alpha, activate KSHV-GPCR over constituti...
متن کاملHuman Interferon-γ–inducible Protein 10 (IP-10) Inhibits Constitutive Signaling of Kaposi's Sarcoma–associated Herpesvirus G Protein–coupled Receptor
A G protein-coupled receptor (GPCR) is encoded within the genome of Kaposi's sarcoma- associated herpesvirus (KSHV)/human herpesvirus 8, a virus that may be involved in the pathogenesis of Kaposi's sarcoma and primary effusion lymphomas. KSHV-GPCR exhibits constitutive signaling activity that causes oncogenic transformation. We report that human interferon (IFN)-gamma-inducible protein 10 (HuIP...
متن کاملThe N terminus of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor is necessary for high affinity chemokine binding but not for constitutive activity.
Kaposi's sarcoma-associated herpesvirus (KSHV) contains a gene encoding a G protein-coupled receptor (KSHV-GPCR) that is homologous to mammalian chemokine receptors. KSHV-GPCR signals constitutively (in an agonist-independent manner) via the phosphoinositide-inositol 1,4,5-trisphosphate pathway. Because it has been proposed that the N terminus (N-TERM) of other GPCRs may act as tethered agonist...
متن کاملA KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling
Kaposi's sarcoma (KS) is a highly disseminated angiogenic tumor of endothelial cells linked to infection by Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV encodes more than two dozens of miRNAs but their roles in KSHV-induced tumor dissemination and metastasis remain unknown. Here, we found that ectopic expression of miR-K12-3 (miR-K3) promoted endothelial cell migration and invasion. Bio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 163 4 شماره
صفحات -
تاریخ انتشار 1999