Contribution of serine residues to constitutive and agonist-induced signaling via the D2S dopamine receptor: evidence for multiple, agonist-specific active conformations.

نویسندگان

  • B L Wiens
  • C S Nelson
  • K A Neve
چکیده

Dopamine D2 receptors contain a cluster of serine residues in the fifth transmembrane domain that contribute to activation of the receptor as well as to the binding of agonists. We used rat D2S dopamine receptor mutants, each containing a serine-to-alanine substitution (S193A, S194A, S197A), to investigate the mechanism through which these residues affect activation of the receptor. Activation of the mutant receptor S194A was abolished in an agonist-dependent manner, such that dopamine no longer inhibited cAMP accumulation in C6 glioma cells or activated G protein-regulated K+ channels in Xenopus laevis oocytes, whereas the efficacy of several other agonists was unaffected. Dihydrexidine did not inhibit cAMP accumulation at either S193A or S194A. The decreased efficacy of dihydrexidine at S193A and S194A and dopamine at S194A was associated with a decreased ability to detect a GTP-sensitive high affinity binding state for these agonists. The ability of dopamine to stimulate [35S]guanosine-5'-O-(3-thio)triphosphate binding via S194A also was decreased by approximately 50%. Finally, constitutive stimulation of [35S]guanosine-5'-O-(3-thio)triphosphate binding and inhibition of adenylate cyclase by the D2S receptor was reduced by mutation of either S193 or S194. These data support the existence of multiple active receptor conformations that are differentially sensitive to mutation of serine residues in the fifth-transmembrane domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice

In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...

متن کامل

The Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice

In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...

متن کامل

Voltage Sensitivity of Dopamine D2-like Receptors

G protein coupled receptors (GPCRs) mediate a multitude of responses serving hormonal, neurotransmitter, and sensory functions. These receptors are important drug targets; in fact, about 27 % of prescribed drugs are GPCR ligands. The dopamine D2 receptor is prominently expressed within the CNS as two distinct isoforms; D2L (long isoform) and D2S (short isoform). The former is mainly expressed p...

متن کامل

Receptor conformations involved in dopamine D(2L) receptor functional selectivity induced by selected transmembrane-5 serine mutations.

Although functional selectivity is now widely accepted, the molecular basis is poorly understood. We have studied how aspects of transmembrane region 5 (TM5) of the dopamine D(2L) receptor interacts with three rationally selected rigid ligands (dihydrexidine, dinapsoline, and dinoxyline) and the reference compounds dopamine and quinpirole. As was expected from homology modeling, mutation of thr...

متن کامل

Normalizing dopamine D2 receptor-mediated responses in D2 null mutant mice by virus-mediated receptor restoration: comparing D2L and D2S.

D2 receptor null mutant (Drd2(-/-)) mice have altered responses to the rewarding and locomotor effects of psychostimulant drugs, which is evidence of a necessary role for D2 receptors in these behaviors. Furthermore, work with mice that constitutively express only the D2 receptor short form (D2S), as a result of genetic deletion of the long form (D2L), provides the basis for a current model in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 54 2  شماره 

صفحات  -

تاریخ انتشار 1998