Dimensionally adaptive hp-finite element simulation and inversion of 2D magnetotelluric measurements

نویسندگان

  • Julen Álvarez-Aramberri
  • David Pardo
چکیده

Magnetotelluric (MT) problems often contain different subdomains where the conductivity of the media depends upon one, two, or three spatial variables. Traditionally, when a MT problem incorporates a three-dimensional (3D) subdomain, the numerical method employed for simulation and inversion was 3D over then entire domain. In here, we propose to take advantage of the possibly lower dimensionality of certain subdomains during the inversion process. By doing so, we obtain significant computational savings (up to 75% in some scenarios) and increased accuracy on the results. We numerically illustrate this method by employing two dimensional (2D) computations based on a multi-goal oriented hp-adaptive Finite Element Method (FEM) that exhibits superior convergence properties. Additionally, we provide a formulation for implementing an efficient adjoint based method for the computation of the derivatives of the impedance, and we show the importance of the (a) proper selection of the inversion variable, and (b) the advantages of using both the Transverse Electric (TE) and Transverse Magnetic (TM) measurements for the proper inversion of MT data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A secondary field based hp-Finite Element Method for the simulation of magnetotelluric measurements

In some geophysical problems, it is sometimes possible to divide the subsurface resistivity distribution as a one dimensional (1D) contribution plus some two dimensional (2D) inhomogeneities. Assuming this scenario, we split the electromagnetic fields into their primary and secondary components, the former corresponding to the 1D contribution, and the latter to the 2D inhomogeneities. While the...

متن کامل

An Agent-Oriented Hierarchic Strategy for Solving Inverse Problems

The paper discusses the complex, agent-oriented hierarchic memetic strategy (HMS) dedicated to solving inverse parametric problems. The strategy goes beyond the idea of two-phase global optimization algorithms. The global search performed by a tree of dependent demes is dynamically alternated with local, steepest descent searches. The strategy offers exceptionally low computational costs, mainl...

متن کامل

MT2DInvMatlab - A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion

MT2DInvMatlab is an open-source MATLAB software package for two-dimensional (2D) inversion of magnetotelluric (MT) data; it is written in mixed languages of MATLAB and FORTRAN. MT2DInvMatlab uses the finite element method (FEM) to compute 2D MTmodel responses, and smoothness-constrained least-squares inversion with a spatially variable regularization parameter algorithm to stabilize the inversi...

متن کامل

Parallel hp-Finite Element Simulations of 3D Resistivity Logging Instruments

We simulate electromagnetic (EM) measurements obtained by using one transmitter and one receiver antenna in a borehole environment. The measurements are used to assess electrical properties of rock formations. We have started from a problem where logging instruments as well as rock formation properties are assumed to exhibit axial symmetry around the axis of a vertical borehole. The initial com...

متن کامل

Application of 2D inversion of magnetotelluric in exploration of hydrocarbon in south west of Iran

Since hydrocarbon sources have an important role in development of industry and technology, exploration of them has been lionized by human. The seismic reflection method is one of the most applicable investigative methods to identify the hydrocarbon reservoirs, but in some cases this method does not work well because of geology conditions and wave attenuation in depth. Thus, some exploration me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Science

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017