Divalent metal ion-peptide interactions probed by electron capture dissociation of trications.
نویسندگان
چکیده
Electron capture dissociation (ECD) of the peptide Substance P (SubP) complexed with divalent metals has been investigated. ECD of [SubP + H + M]3+ (M2+ = Mg2+ -Ba2+ and Mn2+ -Zn2+) allowed observation of a larger number of product ions than previous investigations of doubly charged metal-containing peptides. ECD of Mg-Ba, Mn, Fe, and Zn-containing complexes resulted in product ions with and without the metal from cleavage of backbone amine bonds (c' and z* -type ions). By contrast, ECD of Co and Ni-containing complexes yielded major bond cleavages within the C-terminal methionine residue (likely to be the metal ion binding site). Cu-containing complexes displayed yet another behavior: amide bond cleavage (b and y'-type ions). We believe some results can be rationalized both within the hot hydrogen atom mechanism and mechanisms involving electron capture into excited states, such as the recently proposed amide superbase mechanism. However, some behavior, including formation of (cn 'M - H)+ ions for Ca-Ba, is best explained within the latter mechanisms with initial electron capture at the metal. In addition, the ECD behavior appears to correlate with the metal second ionization energy (IE2). Co and Ni (displaying sequestered fragmentation) have IE2s of 17.1 and 18.2 eV, respectively, whereas IE2s for Mg-Ba, Mn, and Fe (yielding random cleavage) are 10.0 to 16.2 eV. This behavior is difficult to explain within the hot hydrogen atom mechanism because hydrogen transfer should not be influenced by IE2s. However, the drastically different fragmentation patterns for Co, Ni, and Cu compared to the other metals can also be explained by their higher propensity for nitrogen (as opposed to oxygen) binding. Nevertheless, these results imply that directed fragmentation can be accomplished via careful selection of the cationizing agent.
منابع مشابه
Electron capture dissociation of tyrosine O-sulfated peptides complexed with divalent metal cations.
We compare electron capture dissociation (ECD) of doubly protonated and divalent metal-adducted tyrosine O-sulfated peptides without basic amino acid residues. ECD of doubly protonated Tyr2-sulfated cholecystokinin (CCKS) and doubly protonated Tyr12-sulfated gastrin II (GST) resulted in complete loss of SO3 from all product ions. Thus, contrary to typical ECD behavior, localization of the sulfa...
متن کاملElectron capture dissociation of divalent metal-adducted sulfated N-glycans released from bovine thyroid stimulating hormone.
Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca(2+), Mg(2+), and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glyco...
متن کاملElectron capture dissociation of oligosaccharides ionized with alkali, alkaline Earth, and transition metals.
We extend the application of electron capture dissociation (ECD) (which requires at least two charges) to oligosaccharides without basic functionalities by utilizing alkali, alkaline earth, and transition metals (Na+, K+, Ca2+, Ba2+, Mg2+, Mn2+, Co2+, and Zn2+) as charge carriers in electrospray ionization. Both linear and branched oligosaccharides were examined, including maltoheptoase, p-lact...
متن کاملElectron capture dissociation of peptide hormone changes upon opening of the tocin ring and complexation with transition metal cations.
Electron capture dissociation (ECD) is an analytical technique in mass spectrometry (MS) that allows detailed structural study of biomolecules to gain insight in their function. In this work the ECD behavior of two peptide hormones oxytocin (OT1) and vasopressin (VP1) was studied. The results of OT1 and VP1 were compared to structural analogues OT2 and VP2, which have similar amino acid sequenc...
متن کاملThe use of ion mobility mass spectrometry to assist protein design: a case study on zinc finger fold versus coiled coil interactions.
The dramatic conformational change in zinc fingers on binding metal ions for DNA recognition makes their structure-function behaviour an attractive target to mimic in de novo designed peptides. Mass spectrometry, with its high throughput and low sample consumption provides insight into how primary amino acid sequence can encode stable tertiary fold. We present here the use of ion mobility mass ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society for Mass Spectrometry
دوره 17 12 شماره
صفحات -
تاریخ انتشار 2006