[Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons].
نویسنده
چکیده
The regulatory mechanisms of intracellular Cl- concentration ([Cl-]i) were investigated in the lateral superior olive (LSO) neurons of various developmental stages by taking advantage of gramicidin perforated patch recording mode, which enables neuronal [Cl-]i measurement. Responses to glycine changed from depolarization to hyperpolarization during the second week after birth, resulting from [Cl-]i decrease. Furosemide equally altered the [Cl-]i of both immature and mature LSO neurons, indicating substantial contributions of furosemide-sensitive intracellular Cl- regulators; i.e., K+-Cl- cotransporter (KCC) and Na+-K+-Cl- cotransporter (NKCC), throughout this early development. Increase of extracellular K+ concentration and replacement of intracellular K+ with Cs+ resulted in [Cl-]i elevation at postnatal days 13-15 (P13-P15), but not at P0-P2, indicating that the mechanism of neuronal Cl- extrusion is sensitive to both furosemide and K+-gradient and poorly developed in immature LSO neurons. In addition, removal of extracellular Na+ decreased [Cl-]i at P0-P2, suggesting the existence of extracellular Na+-dependent and furosemide-sensitive Cl- accumulation in immature LSO neurons. These data show clearly that developmental changes of Cl- cotransporters alter [Cl-]i and are responsible for the switch from the neonatal Cl- efflux to the mature Cl- influx in LSO neurons. Such maturational changes in Cl- cotransporters might have the important functional roles for glycinergic and GABAergic synaptic transmission and the broader implications for LSO and auditory development.
منابع مشابه
Expression and function of chloride transporters during development of inhibitory neurotransmission in the auditory brainstem.
Glycine and GABA, the dominant inhibitory neurotransmitters in the CNS, assume a depolarizing role in early development, leading to increased cytoplasmic Ca2+ levels and action potentials. The effect is thought to be of some significance for maturation. The depolarization is caused by Cl- efflux, and chloride transporters contribute to the phenomenon by raising the intracellular Cl- concentrati...
متن کاملGlutamatergic calcium responses in the developing lateral superior olive: receptor types and their specific activation by synaptic activity patterns.
The lateral superior olive (LSO) is a binaural auditory brain stem nucleus that plays a central role in sound localization. Survival and maturation of developing LSO neurons critically depend on intracellular calcium signaling. Here we investigated the mechanisms by which glutamatergic afferents from the cochlear nucleus increase intracellular calcium concentration in LSO neurons. Using fura-2 ...
متن کاملAn in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive.
One way in which animals localize sounds along the horizon is by detecting the level differences at the 2 ears. Neurons in the lateral superior olive (LSO) encode this cue by integrating the synaptic drive from ipsilateral excitatory and contralateral inhibitory connections. This synaptic integration was analyzed in 400-500-microns brain slices through the gerbil superior olive. Intracellular r...
متن کاملMetabotropic glutamate receptors in the lateral superior olive activate TRP-like channels: age- and experience-dependent regulation.
The lateral superior olive (LSO) is the primary auditory nucleus for processing of interaural sound level differences, which is one of the major cues for sound localization. During development, survival and maturation of LSO neurons critically depend on synaptic activity and intracellular calcium signaling. Before hearing onset, glutamatergic synaptic inputs from the cochlear nucleus (CN) to th...
متن کاملDecreased Immunoreactivities of the Chloride Transporters, KCC2 and NKCC1, in the Lateral Superior Olive Neurons of Kanamycin-treated Rats
OBJECTIVES From our previous study about the weak expressions of potassium-chloride (KCC2) and sodium-potassium-2 chloride (NKCC1) co-transporters in the lateral superior olive (LSO) in circling mice, we hypothesized that partially damaged cochlea of circling mice might be a cause of the weak expressions of KCC2 or NKCC1. To test this possibility, we reproduced the altered expressions of KCC2 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fukuoka igaku zasshi = Hukuoka acta medica
دوره 91 9 شماره
صفحات -
تاریخ انتشار 1999