Image Classification Using Probability Higher-Order Local Auto-Correlations
نویسندگان
چکیده
In this paper, we propose a novel method for generic object recognition by using higher-order local auto-correlations on probability images. The proposed method is an extension of bag-of-features approach to posterior probability images. Standard bag-of-features is approximately thought as sum of posterior probabilities on probability images, and spatial co-occurrences of posterior probability are not utilized. Thus, its descriptive ability is limited. However, using local auto-correlations of probability images, the proposed method extracts richer information than the standard bag-of-features. Experimental results show the proposed method is enable to have higher classification performances than the standard bag-of-features.
منابع مشابه
Gradient Local Auto-Correlations and Extreme Learning Machine for Depth-Based Activity Recognition
This paper presents a new method for human activity recognition using depth sequences. Each depth sequence is represented by three depth motion maps (DMMs) from three projection views (front, side and top) to capture motion cues. A feature extraction method utilizing spatial and orientational auto-correlations of image local gradients is introduced to extract features from DMMs. The gradient lo...
متن کاملImage representation for generic object recognition using higher-order local autocorrelation features on posterior probability images
This paper presents a novel image representation method for generic object recognition by using higher-order local autocorrelations on posterior probability images. The proposed method is an extension of the bag-of-features approach to posterior probability images. The standard bag-of-features approach is approximately thought of as a method that classifies an image to a category whose sum of p...
متن کاملLiver Cirrhosis Classification on M-Mode Ultrasound Images by Higher-Order Local Auto- Correlation Features
Ultrasound images are widely used for diagnosis of liver cirrhosis. In liver cirrhosis classification using Mmode ultrasound images, Zhou’s method has been shown to be effective. However, in Zhou’s approach, the liver cirrhosis classification performance depends on the accuracy of the abdominal aorta wall extraction. Therefore, we examine to classify the liver cirrhosis not using the abdominal ...
متن کاملMandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis
Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...
متن کاملA Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کامل