Triplex formation at physiological pH by 5-Me-dC-N4-(spermine) [X] oligodeoxynucleotides: non protonation of N3 in X of X*G:C triad and effect of base mismatch/ionic strength on triplex stabilities.

نویسندگان

  • D A Barawkar
  • K G Rajeev
  • V A Kumar
  • K N Ganesh
چکیده

Oligodeoxynucleotide (ODN) directed triplex formation has therapeutic importance and depends on Hoogsteen hydrogen bonds between a duplex DNA and a third DNA strand. T*A:T triplets are formed at neutral pH and C+*G:C are favoured at acidic pH. It is demonstrated that spermine conjugation at N4 of 5-Me-dC in ODNs 1-5 (sp-ODNs) imparts zwitterionic character, thus reducing the net negative charge of ODNs 1-5. sp-ODNs form triplexes with complementary 24mer duplex 8:9 show foremost stability at neutral pH 7.3 and decrease in stability towards lower pH, unlike the normal ODNs where optimal stability is found at an acidic pH 5.5. At pH 7.3, control ODNs 6 and 7 carrying dC or 5-Me-dC, respectively, do not show any triple helix formation. The stability order of triplex containing 5-Me-dC-N4-(spermine) with normal and mismatched duplex was found to be X*G:C approximately X*A:T > X*C:G > X*T:A. The hysteresis curve of sp-ODN triplex 3*8:9 indicated a better association with complementary duplex 8:9 as compared to unmodified ODN 6 in triplex 6*8:9. pH-dependent UV difference spectra suggest that N3 protonation is not a requirement for triplex formation by sp-ODN and interstrand interaction of conjugated spermine more than compensates for loss in stability due to absence of a single Hoogsteen hydrogen bond. These results may have importance in designing oligonucleotides for antigene applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triplex formation at physiological pH: comparative studies on DNA triplexes containing 5-Me-dC tethered at N4 with spermine and tetraethyleneoxyamine.

Oligodeoxynucleotides with spermine conjugation at C4 of 5-Me-dC ( sp -ODN) exhibit triple helix formation with complementary Watson-Crick duplexes, and were optimally stable at physiological pH 7.3 and low salt concentration. This was attributed to a favored reassociation of the polycationic third strand with the anionic DNA duplex. To gain further insights into the factors that contribute to ...

متن کامل

Detection and kinetic studies of triplex formation by oligodeoxynucleotides using real-time biomolecular interaction analysis (BIA).

Real-time biomolecular interaction analysis (BIA) has been applied to triplex formation between oligodeoxynucleotides. 5'-Biotinylated oligonucleotides were immobilised on the streptavidin-coated surface of a biosensor chip and subsequently hybridised to their complementary strand. Sequence-specific triplex formation was observed when a suitable third-strand oligopyrimidine was injected over th...

متن کامل

Relative specificities in binding of Watson-Crick base pairs by third strand residues in a DNA pyrimidine triplex motif.

The specificity of binding of Watson-Crick base pairs by third strand nucleic acid residues via triple helix formation was investigated in a DNA pyrimidine triplex motif by thermal melting experiments. The host duplex was of the type A10-X-A10: T10-Y-T10, and the third strand T10-Z-T10, giving rise to 16 possible triplexes with Z:XY inserts, 4 duplexes with the Watson-Crick base pairs (XY) and ...

متن کامل

Triplex formation by oligonucleotides containing novel deoxycytidine derivatives [published erratum appears in Nucleic Acids Res 1997 Sep 15;25(18): following 3750]

Homopurine sequences of duplex DNA are binding sites for triplex-forming oligodeoxyribopyrimidines. The interactions of synthetic duplex DNA targets with an oligodeoxyribopyrimidine containing N4-(6-amino-2-pyridinyl)deoxycytidine (1), a nucleoside designed to interact with a single C-G base pair interruption of the purine target tract, was studied by UV melting, circular dichroism spectroscopy...

متن کامل

Poly(L-lysine)-graft-dextran copolymer: amazing effects on triplex stabilization under physiological pH and ionic conditions (in vitro).

Triplex DNA formation involving unmodified triplex-forming oligonucleotides (TFOs) is very unstable under physiological conditions. Here, we report a novel strategy to stabilize both purine and pyrimidine motif triplex DNA within the rat alpha1 (I) collagen gene promoter under physiologically relevant conditions by a poly(L-lysine)- graft -dextran copolymer. Using an in vitro electrophoretic mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 24 7  شماره 

صفحات  -

تاریخ انتشار 1996