Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake.
نویسندگان
چکیده
Changes in the budget of dissolved methane measured in a small temperate lake over 1 year indicate that anoxic conditions in the hypolimnion and the autumn overturn period represent key factors for the overall annual methane emissions from lakes. During periods of stable stratification, large amounts of methane accumulate in anoxic deep waters. Approximately 46% of the stored methane was emitted during the autumn overturn, contributing ∼80% of the annual diffusive methane emissions to the atmosphere. After the overturn period, the entire water column was oxic, and only 1% of the original quantity of methane remained in the water column. Current estimates of global methane emissions assume that all of the stored methane is released, whereas several studies of individual lakes have suggested that a major fraction of the stored methane is oxidized during overturns. Our results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period. However, the fraction of stored methane emitted to the atmosphere during overturn may be substantially larger and the fraction of stored methane oxidized may be smaller than in the previous studies suggesting high oxidation losses of methane. The development or change in the vertical extent and duration of the anoxic hypolimnion, which can represent the main source of annual methane emissions from small lakes, may be an important aspect to consider for impact assessments of climate warming on the methane emissions from lakes.
منابع مشابه
Successional changes in bacterial community assemblages following anoxia in the hypolimnion of a eutrophic lake
Dynamics of bacterial assemblages following anoxia in the hypolimnion of a eutrophic lake (Lake Aydat) were characterized. The sampling started in spring before complete anoxia and was continued weekly until complete mixing of the water column occurred in autumn. Bacterial community patterns at 3 sampled depths (10, 12 and 14 m) were investigated using temporal temperature gradient gel electrop...
متن کاملLight-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes
Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane ox...
متن کاملSuccession of Bacterial Communities in a Seasonally Stratified Lake with an Anoxic and Sulfidic Hypolimnion
Although bacteria play key roles in aquatic food webs and biogeochemical cycles, information on the seasonal succession of bacterial communities in lakes is still far from complete. Here, we report results of an integrative study on the successional trajectories of bacterial communities in a seasonally stratified lake with an anoxic hypolimnion. The bacterial community composition of epilimnion...
متن کاملEstimation of gas emission released from a municipal solid waste landfill site through a modeling approach: A case study, Sanandaj, Iran
Sanitary landfill is the common strategy for municipal solid waste management in developing countries. Anaerobic decomposition of disposed wastes in landfill under favorable conditions will lead to the landfill gas (LFG) emissions, considering as emerging air pollutants. The emission of greenhouse gases, including methane, resulting from municipal solid waste disposal and treatment processes ar...
متن کاملMethane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate
[1] Lake sediments are ‘‘hot spots’’ of methane production in the landscape. However, regional and global lake methane emissions, contributing to the greenhouse effect, are poorly known. We developed predictions of methane emissions from easily measured lake characteristics based on measurements for 11 North American and 13 Swedish lakes, and literature values from 49 lakes. Results suggest tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 48 13 شماره
صفحات -
تاریخ انتشار 2014