Efficient LCSS Distance Measure for Searching of Similar Time Series Trajectories
نویسندگان
چکیده
Many researchers have been attracted towards searching of similar moving objects trajectories due to its wide range of real time applications. Searching of similar trajectories of moving objects helps data mining users to take smart decisions and thereby improving the performance of systems. Trajectories are compared for similarity using edit distance measures such as DTW, ERP, EDR, and LCSS. These existing distance measures are popular distance measures and compare trajectories for similarity by computing proximity distance between them. Distance measures DTW, EDR, ERP, and LCSS support scaling and translation property but it does not support rotation invariant property. RI distance measure supports scaling, translation and rotation invariant property and hence RI distance measure is considered to be superior compared to other edit distance measures. Even though RI distance measure is better compared to other edit distance measures, it has two main drawbacks. The first one is, it does not compares trajectories based on the shape and this shape based searching is very much required, since proximity distance is not only the best way to compares trajectories. The second problem, RI is not robust to noise and produces poor results. In this paper, we have proposed Efficient Longest Common Sub-Sequence (ELCSS) distance measure to compares trajectories based on the shape feature. ELCSS distance measure is based on the angular distance of the trajectories. The angular distance captures the shape feature of the trajectory. We have carried out experimental study on the real time and synthetic datasets. Experimental results reveal that our proposed ELCSS distance measure compares the trajectories based on the shape feature. Further, our experimental results reveal that, ELCSS distance measure supports rotation invariant property and very robust to the noise.
منابع مشابه
Measuring the Similarity of Trajectories Using Fuzzy Theory
In recent years, with the advancement of positioning systems, access to a large amount of movement data is provided. Among the methods of discovering knowledge from this type of data is to measure the similarity of trajectories resulting from the movement of objects. Similarity measurement has also been used in other data mining methods such as classification and clustering and is currently, an...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملOn efficiently searching trajectories and archival data for historical similarities
We study the problem of efficiently evaluating similarity queries on histories, where a history is a d-dimensional time series for d ≥ 1. While there are some solutions for timeseries and spatio-temporal trajectories where typically d ≤ 3, we are not aware of any work that examines the problem for larger values of d. In this paper, we address the problem in its general case and propose a class ...
متن کاملAn Effective Algorithm for Clustering Time - Series Data by Fuzzy Logic
A variety of techniques currently exist for measuring the similarity between time series datasets. Of these techniques, the methods whose matching criteria are bounded by a specified threshold value, such as the LCSS technique, have been shown to be robust in the presence of noise, time shifts, and data scaling. Afterwards, by utilizing an efficient method, clusters are updated incrementally an...
متن کاملDiscovering Similar Multidimensional Trajectories
We investigate techniques for analysis and retrieval of object trajectories in a two or three dimensional space. Such kind of data usually contain a great amount of noise, that makes all previously used metrics fail. Therefore, here we formalize non-metric similarity functions based on the Longest Common Subsequence (LCSS), which are very robust to noise and furthermore provide an intuitive not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017